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Covering Polygons with Rectangles
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Abstract

A well-known and well-investigated family of hard op-
timization problems concerns variants of the cutting
stock or nesting problem, i.e. the non-overlapping
placing of polygons to be cut from a rectangle or the
plane whilst minimizing the waste. Here we consider
an in some sense inverse problem. Concretly, given
a set of polygons in the plane, we seek the minimum
number of rectangles of a given shape such that every
polygon is covered by at least one rectangle. As mo-
tions of the given rectangle we investigate the cases
of translation and of translation combined with rota-
tion.

1 Introduction

In manufacturing, one often faces the problem of cut-
ting a set of given polygons out of a piece of material
(e.g. sheet metal or cloth) in a way which produces as
less waste as possible. In this paper we investigate the
subsequent step in production technology: once the
pieces are cut out they will be picked off and trans-
ported by a suitable device. Here we restrict ourselves
to a rectangular gripper and various degrees of free-
dom: The first case is a rectangular gripper which can
be translated both in x- and y-direction; the second
case deals with a rectangular gripper which addition-
ally has the possibility of being rotated. The concrete
motivation of this paper is a machine which cuts poly-
gons out of a carbon fiber fabric and grasps the cut
pieces with a rectangular gipper with vacuum suction
devices.

Basically, this task corresponds to covering a set
of polygons by copies of a rectangle such that every
polygon is contained in at least one rectangle. There
is a lot of work about covering sets of points with
rectangles as in [4, 6] but none of them matches our
problem. Due to the NP-hardness of all these prob-
lems (see [5] for a comprehensive list) we suspect that
the problems we consider are also NP-hard. We do
not propose an approximation algorithm but a fam-
ily of exact algorithms which works well on practical
instances.

The paper is organized as follows: Section 2 pro-
vides definitions and states the problem in a generic
way. In Section 3 we prove some useful lemmata for
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Figure 1: The bottom side of the gripper

the further course. A generic approach to the prob-
lems is presented in Section 4, while Section 5 deals
with some implementation issues and provides exper-
imental results. The finishing Section 6 gives a short
summary and directions of future work.

2 Definitions

In order to formalize our task we introduce the con-
cept of a packing: a packing P = {P1, P2, . . . , Pn} is
a set of n possibly overlapping simple polygons P1,
P2, . . ., Pn. Clearly, |P| denotes the number of poly-
gons of P, and we use the notation ‖P‖ for the overall
number of vertices in P. We say that a packing P is
covered by a set C = {R1, R2, . . . , Rm} of rectangles
if each polygon of P is contained in at least one rect-
angle of C. If a rectangle R′ arises from a rectangle R
by a translation we call R′ a translation of R, and if R′

arises from R by a translation and a rotation we say
that R′ is a general motion of R (this is equivalent to
the term “rigid motion” in [2]). With these namings
we can define the main theme of our investigations:

Definition 1 Let P be a packing and R an axis-
aligned rectangle (the so-called gripper). We call a set
of rectangles C = {R1, R2, . . . , Rm} a translational
(general) cover of P if C covers P and all rectangles
of C are translations (general motions) of R.

Since we are interested in covering a packing with
as few as possible rectangles we call a cover of every
kind optimal if it has minimal cardinality amongst all
covers of the respective kind. To ease wording we refer
by the term cover to both a translational or general
cover. For a packing P and a rectangle R we denote
the set of polygons of P covered by R by cov(R,P).
We extend this notion to a set R of rectangles by
cov(R,P) :=

⋃
R∈R

cov(R,P).
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Figure 2: Translational Alignments

3 Basic Facts and Observations

In general, the set of covers of a given packing is un-
countable so we will have to discretize the search space
in a suitable manner. As tools for reducing the num-
ber of coverings to consider for computation we state
some useful properties and lemmata. The first lemma
which holds for both translational and general cov-
ers will pave the way for a recursive approach to our
problem:

Lemma 1 Let P be a packing, C an optimal cover of
P and Rj an arbitrary rectangle of C. Then C\{Rj}
is an optimal cover of P\cov(Rj ,P).

Proof. Assume there is a cover C′ of P\cov(Rj ,P)
with |C′| < |C| − 1. Then C′ ∪ {Rj} is a cover of
P with a size of |C′|+ 1 < |C| which contradicts the
optimality of C. �

In the next lemma we give a first step towards dis-
cretization of the search space in the case of a trans-
lational cover:

Lemma 2 Let P be a packing and C =
{R1, R2, . . . , Rm} an optimal translational cover of P.
Then there are points p1 and p2 of P and an index
j together with an axis-aligned rectangle R′

j fulfilling
the following properties:

1. p1 has minimal x-coordinate amongst all points
of P,

2. p1 lies on the left side of R′
j ,

3. p2 lies on the upper side of R′
j ,

4. there are polygons P1, P2 ∈ P such that for i ∈
{1, 2} pi is a vertex of Pi and Pi is contained in
R′

j , and

5. C\{Rj} ∪ {R′
j} is an optimal translational cover

of P.

Figure 3: General Motion Alignments

Note that we do not require that p1 and p2, P1 and
P2 as well as Rj and R′

j are distinct. Moreover, if p1
and p2 are equal then they coincide with the upper
left vertex of R′

j .

Proof. Let p1 be a point of P with minimal x-
coordinate and P1 a polygon of P which has p1 as
a vertex. Then there is a rectangle Rj ∈ C contain-
ing P1. Now we translate Rj in positive x-direction
till p1 lies on the left side of the translated rectangle
R̂j . Clearly, we have cov(R̂j ,P) ⊇ cov(Rj ,P). Sub-

sequently, we translate R̂j in negative y-direction till
a point p2 with the following properties lies on the
upper side of the translated rectangle R′

j :

1. All polygons of P with p2 as a vertex contained
in R̂j are contained in R′

j , and

2. p2 is a point with maximal y-coordinate fulfilling
the above requirements.

Then we have cov(R′
j ,P) ⊇ cov(R̂j ,P) ⊇ cov(Rj ,P),

so C\{Rj} ∪ {R′
j} is indeed an optimal translational

cover of P. Moreover, p1, p2 and P1 meet their re-
quirements by construction, and for P2 we can choose
an arbitrary polygon with p2 as a vertex which is con-
tained in R′

j . �

The general situation is depicted in the left part of
Figure 2: Rj correponds to the dotted rectangle, R̂j

to the dashed one, and the final rectangle R′
j is drawn

with a full line. A pathological example where p1 and
p2 as well as P1 and P2 coincide can be seen in the
right part of the same figure.
A similar property can be stated for general covers

(this and the previous lemma show some similarity to
the term “stable placement” in[1]):

Lemma 3 Let P be a packing and C an optimal gen-
eral cover of P. Then for every polygon Ppi ∈ P there
are points p1, p2 and p3 of P and an index j together
with a rectangle R′

j fulfilling the following properties:
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1. R′
j contains Ppi,

2. p1 and p2 are distinct and lie on two different
adjacent sides of R′

j

3. p1, p2 and p3 lie on sides of R′
j ,

4. there are polygons P1, P2, P3 ∈ P such that for
i ∈ {1, 2, 3} pi is a vertex of Pi and Pi is contained
in R′

j ,

5. C\{Rj}∪ {R′
j} is an optimal general cover of P.

Proof. Let Rj ∈ C be a rectangle containing Ppi. We
apply to Rj similar translations as in Lemma 2 but
do not translate in x- and y-direction but in directions
parallel to adjacent sides of Rj . Doing so, we end up

with a rectangle R̂j and two (not necessarily distinct!)
points p1 and p2 with the following properties:

1. R̂j contains Ppi,

2. p1 and p2 lie on adjacent sides of R̂j ,

3. cov(R̂j ,P) ⊇ cov(Rj ,P), and

4. there are polygons P1, P2 ∈ P such that for i ∈
{1, 2} pi is a vertex of Pi and Pi is contained in
R̂j .

Now we perform a general motion of R̂j combined of
a clockwise rotation and suitable translation which
keeps p1 and p2 on their respective sides. There are
two cases:

1. p1 and p2 coincide. Then the described general
motion is a simple rotation of R̂j around p1. This
rotation is continued as long as a point p3 lies on
a side of the resulting rectangle R′

j such that the
following properties hold:

(a) R′
j contains Ppi,

(b) there are polygons P1, P3 ∈ P such that for
i ∈ {1, 3} pi is a vertex of Pi and Pi is con-
tained in R′

j , and

(c) cov(R′
j ,P) ⊇ cov(R̂j ,P).

2. p1 and p2 are distinct. Here we continue the gen-
eral motion till one of the following two cases
concerning the arising rectangle R′

j occurs:

(a) p1 or p2 coincide with a vertex of R′
j , or

(b) there is a point on a side of R′
j such that

i. R′
j contains Ppi,

ii. there are polygons P1, P2, P3 ∈ P such
that for i ∈ {1, 2, 3} pi is a vertex of Pi

and Pi is contained in R′
j , and

iii. cov(R′
j ,P) ⊇ cov(R̂j ,P).

Now, after possibly necessary renamings, p1, p2 and
p3 together with R′

j meet the requirements of the
lemma. �

The general situation is shown in the lower left part
of Figure 3: the dotted rectangle corresponds to Rj ,

the dashed one to R̂j and the fully lined to R′
j . An

extreme situation is illustrated by the upper right part
of the same figure.

4 General Approach

We will now introduce an exact generic algorithm for
the minimal cover problem. For the sequel we fix a
rectangle R which we will use as gripper for a trans-
lational or general cover of a packing P.

Let us assume we have an algorithm
candidate rectangles which determines for every pack-
ing Q a finite set of translations or general motions of
R such that for every optimal cover C of Q and every
Rcov ∈ C there is an Rcand ∈ candidate rectangles

such that cov(Rcov,Q) ⊆ cov(Rcand,Q) holds.
Together with a function simp cov which computes
an arbitrary cover (which can be done by packing
each polygon into a rectangle of the gripper’s shape)
we can formulate the generic Algorithm 1 whose
correctness is ensured by Lemma 1.

Algorithm 1 Generic Branch and Bound Algorithm

Require: A Packing P and a Gripper R
1: set<rectangle> global cover = simp cov(R,P)
2: int global depth = |global cover|
3: Branch and Bound(0,∅)

Ensure: global cover is an optimal cover of P by R

with cardinality global depth

4: function Branch and Bound(int depth,
set<rectangle> rectangles)

5: if rectangles covers P then

6: global depth = depth

7: global cover = rectangles

8: else if depth < global depth then

9: set<rectangle> candidate rectangles =
10: candidate rectangles(P\cov(rectangles,P))
11: for all R ∈ candidate rectangles do

Branch and Bound(depth + 1,
rectangles ∪ {R})

12: end for

13: end if

14: end function

Depending on whether one is interested in an
optimal translational or general cover the function
candidate rectangles has to be implemented in differ-
ent ways. Some possibilities are described in the next
section.
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Algorithm 1 is an exact algorithm so we cannot ex-
pect a polynomial running time. In the worst case,
there are O(|P|2|P|) calls of Branch and Bound.
As we will see in the next section, the candidate rect-
angles can be computed in O(‖P‖) time for the trans-
lational and in O(‖P‖)3 time for the general case.

5 Implementation Sketch and Experimental Re-

sults

A short look at Algorithm 1 reveals that a BFS in the
induced search graph will lead to a faster implemen-
tation. As usual, the drawback of this approach is a
greater amount of space required during the compu-
tation. We implemented both versions and observed
that the BFS approach fits our practical problems bet-
ter.
Lemmata 2 and 3 provide methods for computing

the set canditate rectangles in Line 9 of Algorithm 1.
In the case of a translational cover we observe that

a translation of a rectangle is uniquely determined by
the position of its upper left vertex. Moreover, given
two distinct points, there at most one translations
which make the two points lie on adjacent sides ac-
cording to Lemma 2. In the sequel we will concentrate
on the general cover problem because our gripper can
also be rotated around the z-axis. Nevertheless, we
implemented our algorithm for the translational cover
and could solve instances with 25 polygons and 1250
vertices in less than a second on an Intel i7-4770 CPU
with 3.4 GHz.
Similarly, each pair or triple of distinct point gives

raise to only a finite number of general motions
of given rectangle meeting the requirements from
Lemma 3. So we iterate over the points or pairs or
triples of points from the packing under consideration
(concretely P\cov(rectangles,P) in Line 9 of Algo-
rithm 1) and determine all motions of R which fulfill
the conditions of Lemma 2 or 3, resp. Of course, it
suffices to keep only those rectangles which cover a
maximal set of polygons.
We refined this approach by the following idea:

first, for every polygon P from the initial nesting, we
generate a list PP

1
, PP

2
, . . . , PP

m of compatible poly-
gons which can be covered by the given gripper to-
gether with P . Second, we use these lists to com-
pute the candidate rectangles for a packing P′ aris-
ing during the execution as follows: we choose a
pivot polygon Ppi from P′ and iterate over all triples

(P
Ppi

i , P
Ppi

j , P
Ppi

k ) of compatible polygons of Ppi with
i ≤ j ≤ k. For every such triple we compute the con-
vex hull and determine for every tuple respectively
triple of points of the convex hull the rectangles ac-
cording to Lemma 3. As mentioned above, we only
keep the rectangles covering a maximal set of poly-
gons. The restriction to the points of the convex hull
is justified by the fact that the covering rectangle has

to contain all polygons of {P
Ppi

i , P
Ppi

j , P
Ppi

k } which is
equivalent to it that it contains the convex hull of
these polygons. A crucial point is the choice of the
polygon Ppi from Lemma 3 as pivot polygon in or-
der to keep the branching degree of the algorithm at
a low level. Experiments showed that a good choice
for the pivot polygon is a polygon which has minimal
distance to a vertex of an axis parallel rectangular
minimal bounding box of P′.
As one would expect, our experiments indicated

a running time cubic in the overall number of ver-
tices and roughly exponential in the number of poly-
gons. Our implementation in Java solved instances
from practice with 25 polygons and 1250 vertices in
about 20 minutes on average in the same environment
as above.

6 Conclusion and Outlook

Our algorithm seems to be applicable to practical in-
stances. However, there is room for further improve-
ments. In our setting the algorithm was run on only
one core which is clearly not optimal since it is obvi-
ously easy to construct a parallelized version. Another
idea is to compare other strategies than described
above for finding the pivot polygon. From a theo-
retical point of view, it will be interesting to show the
conjectured NP-completeness of our problems.
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