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Abstract

We consider the approximation of two NP-hard prob-
lems: Minkowski Decomposition (MinkDecomp) of in-
tegral lattice polygons, and the related Multidimen-
sional Subset Sum (kD-SS). We prove, through a
gap-preserving reduction, that, for general dimension
k, kD-SS does not have an FPTAS. For 2D-SS, we
present an O(n7/ε4) approximation algorithm, where
n is the set cardinality and ε bounds the approxima-
tion, and use it to approximate MinkDecomp.

1 Introduction

A polygon Q is called lattice polygon when all its ver-
tices are integer points.

Problem 1 Minkowski Decomposition
(MinkDecomp). Given a lattice convex poly-
gon Q, decide if it is decomposable, that is, if there
are nontrivial lattice polygons A and B such that
A + B = Q, where + denotes Minkowski sum. The
polygons A and B are called the summands.

Problem 2 MinkDecomp-µ-approx

Input: A lattice polygon Q and a parameter 0 <
ε < 1 and µ is a measure of polygons.

Output: Lattice polygons A,B such that µ(Q) −
εX < µ(A+B) < µ(Q)+ εX. We call such an output
an εX-solution.

Problem 1 is proven NP-complete in [5] and can be
reduced to 2D-SS. For the reduction see Section 4.

Problem 3 kD-Subset Sum (kD-SS)
Input: A vector set S = {vi | vi ∈ Zk, 1 ≤ i ≤ n} and
a target vector t ∈ Zk.

Output: Decide whether there exist a vector subset
Sτ = {v1, v2, . . . , vτ} ⊆ S such that

∑τ
i=1 vi = t.
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This is a generalization of the classic 1D-SS problem,
and as such, is also NP-complete.

Let Pi be the set of all possible vector sums that can
be produced by adding at most i elements from the
first i vectors in S. Then, Pn is the set of all possible
vector sums. Here is the approximation version:

Problem 4 kD-SS-approx
Input: A set S = {vi | vi ∈ Zk, 1 ≤ i ≤ n, k ≥ 1}, a

nonzero target t ∈ Pn and 0 < ε < 1.
Output: Find a subset Sτ = {v1, v2, . . . , vτ} ⊆ S

whose vector sum t′ satisfies dist(t, t′) ≤ ε|t|, where
|t| is the length of t.

We consider Euclidean distance l2 but the discussion
is easily generalized to any lp, 1 ≤ p <∞.

Definition 1 A PTAS (Polynomial Time Approxi-
mation Scheme) is an algorithm which takes an in-
stance of an optimization problem and a parameter
ε > 0 and, in polynomial time, produces a solution
that is within a factor 1 + ε of being optimal for min-
imazation problems, or 1 − ε for maximization. One
further defines class FPTAS (Fully PTAS) where the
time complexity is polynomial in both input size and
parameter ε.

Previous work 1D-SS and kD-SS are not strongly
NP-complete and can be solved exactly in pseudo-
polynomial time: 1D-SS is solved in O(nt) and, gener-
alizing this idea, kD-SS is solved in O(n|M |k), where
M = maxPn is the farthest reachable point; informa-
tion for k = 2 in [8]. Moreover, 1D-SS is in FPTAS
[6].

A similar problem to kD-SS is the Closest Vector
Problem (CVP): we are given a set of basis vectors
B = {b1, . . . , bn}, where bi ∈ Zk, and a target vector
t ∈ Zk, and we ask what is the closest vector to t
in the lattice L generated by B. The lattice of B
is L(B) = {∑m

1 aibi | ai ∈ Z} and thus kD-SS is a
special case of CVP, where ai ∈ {0, 1}. CVP cannot

be approximated within a factor of 2log
1−ε n [1, 3].

MinkDecomp has its fair share of attention. One
application is in the factorization of bivariate polyno-
mials through their Newton polygons. If a polynomial
factors, then its Newton polygon has a Minkowski
decomposition. Here, we are interested in find-
ing approximate solutions of the latter: polygons
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whose Minkowski Sum is almost the original poly-
gon. MinkDecomp is NP-complete for integral poly-
gons, and a pseudopolynomial algorithm exists [5].
An algorithm for polynomial irreducibility testing us-
ing MinkDecomp is presented in [7]. They present a
criterion for MinkDecomp that reduces the decision
problem into a question in linear programming. Con-
tinuing the work in [4], we propose a poly-time algo-
rithm that solves MinkDecomp approximately using
a solver for 2D-SS.

Our contribution We introduce the kD-SS prob-
lem. It is clearly NP-complete; we prove that it cannot
be approximated efficiently. We design an algorithm
for 2D-SS-approx: given a set S, |S| = n, target t
and 0 < ε < 1, the algorithm returns, in O(n7ε−4),
a subset of S whose vectors sum to t′ such that
dist(t, t′) ≤ εM , where M is the length of the largest
possible sum of vectors in any subset of S. This algo-
rithm yields an approximation algorithm for MinkDe-
comp: If Q is the input polygon the algorithm returns
polygons A and B whose Minkowski sum defines poly-
gon Q′ such that vol(Q) ≤ vol(Q′) ≤ vol(Q) + εD2

and per(Q) ≤ per(Q′) ≤ per(Q) + 2εD, where D is
the diameter of Q, i.e., the maximum distance be-
tween two vertices of Q.

2 kD-SS is not in FPTAS

To prove that kD-SS is not in FPTAS we will apply
the idea for the CVP, which is not in PTAS [1]. We
will change their proof and apply it to our problem to
prove something weaker for kD-SS.

Given a CNF formula φ we invoke Proposition 1 and
get an instance of the Set Cover problem. This is a
gap introducing reduction, because if φ is statisfiable
then the instance of Set Cover has a solution of size
exactly K and if φ is not statisfiable every solution has
size at least cK for a constant c. From this instance
of Set Cover we create an instance for kD-SS that
preserves the gap. Now, if φ is satisfiable, the closest
vector to a given target t has distance exactly K. If
φ is not statisfiable, the closest vector in target t has
distance at least cK.

We reduce kD-SS to Set Cover for norm l1, but
this can easily be generalized to any lp, where p is a
positive integer. We say that a cover is exact if the
sets in the cover are pairwise disjoint.

Proposition 1 [2] For every c > 1 there is a polyno-
mial time reduction that, given an instance φ of SAT,
produces an instance of Set Cover {U , (S1, . . . , Sm)}
where U is the input set of integers and S1, . . . , Sm
are subsets of U , and integer K with the property:
If φ is satisfiable, there is an exact cover of size K,
otherwise all set covers have size more than cK.

Theorem 2 Given a CNF formula φ and c > 1 we
create an instance {v1, . . . , vn, t} of kD-SS. If φ is sat-
isfiable, then the minimum distance from t is less than
K or otherwise, it is more than cK.

Proof. Let {U , (S1, . . . , Sm),K} be the instance of
Set-Cover obtained in Proposition 1 for the formula
φ. We transform it to an instance of kD-SS with input
set S and target t, such that the distance of t from
the nearest point in the set of all possible points Pn
is either K or ≥ cK.

Let vi be the vectors of the reduction that will have
n+m coordinates, where |U| = n. We will create such
a vector vi for every set Si. Let L = cK. Then the
first n coordinates of each vector vi have their j’th-
coordinate (j ≤ n) equal to L, if the corresponding
j’th-element belongs to set Si, or 0 otherwise. The
remaining m coordinates have 1 in the (n + i)’th-
coordinate and zeros everywhere else:

vi = (L · χSi , 0, . . . , 1, . . . 0) = (L · χSi , ei)

The target vector t has in the first n coordinates L
and the last m are zeros, t = (L, . . . , L, 0, . . . , 0).

Now, let the instance of Set-Cover have an exact
cover of size K. We will prove that the minimum
distance from target t is less than K. Without loss of
generality, name the solution {S1, . . . , SK}. For each
Si, 1 ≤ i ≤ K sum the corresponding vectors vi and
let this be ζ ∈ Zn+m:

ζ =

K∑
i=1

vi = (L, . . . , L,︸ ︷︷ ︸
n

1, . . . , 1︸ ︷︷ ︸
K

0, . . . , 0︸ ︷︷ ︸
m−K

).

The first n variables must sum up to (L,L . . . , L),
because if one of the coordinates was 0, the solution
would not be a cover and if one of them was greater
than L, then some element is covered more than once
and the solution would not be exact. The key point
is that in the last m coordinates we will have exactly
K ones. The distance of this vector ζ from t is

‖ − t+ ζ‖1 = ‖(0, . . . , 0,︸ ︷︷ ︸
n

1, . . . , 1︸ ︷︷ ︸
K

0, . . . , 0︸ ︷︷ ︸
m−K

)‖1 = K

Thus, there is a point in Pn that its distance from t
is at most K.

Let us consider the other direction, where the Set
Cover instance has a solution set greater than cK =
L. We will show that the closest vector in t has dis-
tance at least L. This solution must have at least
cK = L sets. As before, ‖ − t + ζ‖1 ≥ L (this time
the cover need not be exact).

Towards a contradiction, suppose there exists a vec-
tor ξ such that ‖ − t+ ξ‖1 < L. If the corresponding
sets do not form a cover of S then one of the first
n coordinates of ξ is 0 and this alone is enough for
‖ − t + ξ‖1 > L. If the sets form a cover that is not
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exact, then in at least one of the first n coordinates
of ξ will be greater than L (for the element that is
covered more than once) and will force ‖ − t+ ξ‖1 to
be greater than L. Finally, if the sets form an exact
cover, the first n coordinates of ‖ − t+ ξ‖1 will be 0.
For the distance to be less than L, in the last m coor-
dinates there must be less than L units implying that
the sets in the cover are less than L contradicting our
hypothesis.

In all cases, there cannot exist a vector whose dis-
tance from t is < cK. �

Theorem 3 There is no FPTAS for kD-SS-approx
unless P=NP.

Proof. φ is a given formula. Suppose there exists an
FPTAS for kD-SS-approx. Run the algorithm with
ε = 1/cn and target t. Since ‖t‖1 = ncK, we are
looking for possible solutions within distance εncK =
K from t. By Theorem 2, we distinguish whether φ
is satisfiable or not in polynomial time. �

3 The approximation algorithm for 2D-SS

In this section we discuss the approximation algo-
rithm for 2D-SS. The idea is to create all possible
vectors step by step. At each step, if two vectors are
close to each other, one is deleted. Whenever we re-
fer to distance it is the Euclidean distance. We begin
with notation.

• Input: the set S = {v1, v2, . . . , vn} with vi =
(xi, yi) ∈ Z2 and |S| = n, parameter 0 < ε < 1.

• Pi is the set of all possible vectors that can be
produced by adding at most i elements from the
first i vectors in S. Pn is the set of all possible
vector sums.

• Ei = Li−1 ∪ {Li−1 + vi} is the list created at the
beginning of every step and that is about to get
trimmed.

• Li = trim(Ei, δ) is the trimmed list.

At the beginning of the i-th step we create the list
Ei = Li−1 ∪ {Li−1 + vi}. Notice that, addition is
over Z2, and after a point is found we calculate its
length and sort Ei based on the lengths. For each
vector u ∈ Ei with length |u| and angle θ(u), check
all the vectors u′ ∈ Ei that have length |u| ≤ |u′| ≤
(1 + δ)|u|. If also θ(u)− δ ≤ θ(u′) ≤ θ(u) + δ, remove
u′. Li is the trimmed list, that is, from the list Ei
we remove vectors that are close to each other. The
two conditions ensure that dist(u′, u) ≤ αδ|u|, where
1 ≤ α ≤ 2 is a constant. Every vector that is deleted
from Ei is not very far away from a vector in Li:

∀u ∈ Ei,∃w ∈ Li : u = w + rw, |rw| ≤ αδ|w| (1)

hence, |w| ≤ |u| ≤ (1 + δ)|w|. See fig. 1.

Lemma 4 Call function Li =trim(Ei, δ) where Ei is
an input list of vectors and δ = ε/2n the parameter.
Then |Li| = O(n3ε−2) for 1 ≤ i ≤ n.

Proof. Let Mi = max{|xk| : xk ∈ Ei}, the vector
in Ei with the largest magnitude. Every vector in Ei
has length between (1+δ)k and (1+δ)k+1 that forms
an annulus, called zone. Solving (1 + δ)k ≥Mi for k,
there are O(n2/ε) many zones.

Every zone can be divided in cells. Each cell is
taken in such a way that it will cover 2δR of the lower
circle, where R is the radius of the circle. Thus every
zone has at most 2πR/δR = 4πn/ε cells. List Li has
at most an entry for every cell created and size can
be |Li| ≤ (n2/ε) · (4πn/ε) = O(n3ε−2). �

δ|v|

δ|v|
δ|v|

αδ|v|
v

Figure 1: One cell
for vector v.

The running time for
2D-SS-approx is O(n|Ln|2)
and overall it requires time
O(n7ε−4).

Theorem 5 For a set of
vectors S = {vi | vi ∈
Z2, 0 ≤ i ≤ n}, every vector
sum v ∈ Pn can be approxi-
mated by a vector w

∀v ∈ Pn,∃w ∈ Ln,∃rw : v = w + rw,

|rw| ≤ nδmax{Ln},

where max{Li} is the length of the largest vector.

Proof. The proof is by induction. �

Setting δ = ε/2n we can ensure that every possible
vector sum will be approximated by a vector in Ln
at most εmax{Ln} far. Implementing and testing the
algorithm, much better bounds are obtained.

Lemma 6 Let S = {vi | vi ∈ Z2, 0 ≤ i ≤ n} be
the input set of vectors. If also all vectors are in one
quadrant and for all vi ∈ S : |vi| ≥ δ

∑n
1 |vi| then

∀v ∈ Pn, ∃w ∈ Ln, ∃rw : v = w + rw, |rw| ≤ nδ|w|

Proof. The proof is by induction. �

In the special case, where all vectors are within an
angle of 90 degrees and there are no short vectors,
this algorithm gives an (1+ε)-approximation solution
meaning an FPTAS for δ = ε/2n.

4 Minkowski Decomposition using 2D-SS

In this section we will describe an algorithm for ap-
proximating MinkDecomp. The algorithm takes an
input polygon Q, transform it to an instance {S, t}
of 2D-SS-approx and calls our algorithm for 2D-SS-
approx to solve MinkDecomp.
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Let Q be the input to MinkDecomp: Q = {vi |
vi ∈ Z2, 0 ≤ i ≤ n}. First we create the vector set
U by subtracting successive vertices (in clockwise or-
der): U = {v1 − v2, . . . , vn − v0}. We call U the edge
sequence and each vector is called an edge vector. Its
edge sequence is denoted by s(Q). For each edge vec-
tor v in s(Q) we calculate its primitive vector.

Definition 2 Let v = (a, b) be a vector and d =
gcd(a, b). The primitive vector of v is e = (a/d, b/d).

We get an edge vector (x, y) ∈ s(Q) and calcu-
late its primitive vector e = (x/d, y/d), where d =
gcd(x, y). The scalars d1, . . . , dk are computed by:

di = 2i, i = 0, . . . , blog2 d/2c and dk = d−
blog2 d/2c∑

i=1

di

We create the set S by adding the vectors die and
repeat the procedure for all vectors v ∈ s(Q). Notice

that
∑k

1 di = d, so the primitive edge sequence also
sums to (0, 0). Using this construction, the primitive
vectors added are log d for every v ∈ s(Q). The prim-
itive edge sequence uniquely identifies the polygon up
to translation determined by v0. This is a standard
procedure as in [5, 4].

The main defect in this approach is that the algo-
rithm returns a sequence of vectors S′ ⊂ S that sum
close to (0, 0) but possibly not (0, 0). This means the
corresponding edge sequence does not form a closed
polygon. To overcome this, we just add to s(A) the
vector v, from the last point to the first, to close the
gap. If s(A) sums to a point (a, b), by adding vector
v = (−a,−b) to s(A) the edge sequence s(A) ∪ {v}
now sums to (0, 0). If we rearrange the vectors by
their angles, they form a closed, convex polygon that
is summand A. We do the same for the sequence s(B).
Notice that the vector added in s(B) is −v = (a, b)
and this sequence (rearranged) also forms a closed,
convex polygon. We name s(A′) = s(A) ∪ {v},
s(B′) = s(B) ∪ {v} and take their Minkowski Sum
Q′ = A′ + B′, where A′ and B′ are the convex poly-
gons formed by s(A′) and s(B′). We measure how
close Q′ is to the input Q. Let D be the diameter of
Q, the maximum distance between two vertices of Q.

Lemma 7 Let the summands A′ and B′ of Q′, as
discussed. We deduce that vol(Q′) ≤ vol(Q) + εD2

and per(Q′) ≤ per(Q) + 2εD.

Proof. We observe that

s(Q′) = s(A′) ∪ s(B′) = s(A) ∪ s(B) ∪ {v,−v} =⇒
s(Q′) = s(Q) ∪ {v,−v}.

This equals adding to Q a single segment s of length
|s| = |v| and Q′ = Q+s. Since per(Q) =

∑
v∈s(Q) |v|,

it follows per(Q′) = per(Q) + 2|v|. For the volume of

Q′, at worst, where v is perpendicular to D, a rect-
angle with sides v and D is added to Q. This ex-
tra volume is ≤ |v|D, thus vol(Q′) ≤ vol(Q) + |v|D.
It is also easily observed that vol(Q) ≤ vol(Q′) and
per(Q) ≤ per(Q′) since Q′ = Q+ s.

The length of vector v we add to close the gap, is the
key factor to bound polygon Q′. From the guarantee
of the 2D-SS-approx algorithm we know that s(A)
(and respectively s(B)) sum to a vector with length
at most εmax{Ln}. This is vector v and thus |v| ≤
εmax{Ln}. Since max{Ln} ≤ D, we get |v| ≤ εD.
This yields per(Q) ≤ per(Q′) ≤ per(Q) + 2εD and
vol(Q) ≤ vol(Q′) ≤ vol(Q) + εD2. �

Corollary 8 The proposed algorithm provides a
2εD-solution for MinkDecomp-per-approx and an
εD2-solution for MinkDecomp-vol-approx.

This algorithm is implemented in Python 3, it is
openly available through Github and Sage1 and tested
for polygons with up to 100 vertices and ε ∈ [0.1, 0.5]
giving much better errors than the bounds proven.
For instances with 50 vertices and ε=0.2, the algo-
rithm needs around 60 minutes to find the summands.
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