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Discrete Fréchet Distance for Uncertain Points

Maike Buchin∗ Stef Sijben∗

Abstract

We consider the problem of computing the discrete
Fréchet distance between polygonal curves with un-
certain points, i.e. the coordinates of the vertices are
not known exactly, but are given by a probability dis-
tribution. In this case, the discrete Fréchet distance
is a random variable. We show that the distribution
function for a given coupling can be efficiently evalu-
ated and give an algorithm to compute the coupling
with maximum probability of realizing a given dis-
crete Fréchet distance.

1 Introduction

The discrete Fréchet distance is a popular measure
for the similarity of two polygonal curves with many
applications. In the standard case where the locations
of the vertices are known exactly, it can be computed
in O(n2) time for two curves of length at most n [5].
Recently, Agarwal et al. discovered a subquadratic
time algorithm for this problem [1].

In practice, the curves are often based on trajec-
tories collected from a moving entity, e.g. using a
GPS tracking device. These devices do not provide
precise locations, but rather an estimate of the loca-
tion, typically including an error margin. If the goal
is to compute the discrete Fréchet distance, a single
outlying observation may lead to a very different cou-
pling than the distance based on real locations, as is
illustrated in Figure 1. One proposed solution is the
(discrete) Fréchet distance with shortcuts [4, 3], which
can remove outliers from one of the curves. Here we
will follow the approach of including the uncertainty
in the model.

Several models have been proposed to incorporate
uncertainty in geometric problems [7]: In the impre-
cise points model each point lies in a given region.
With indecisive points, each point is selected from a
finite set of candidate locations. For uncertain points,
the location of a point is described using a probabil-
ity distribution based on the observed location. The
uncertain points model is the most general, and it is
closest to the practical applications, where a point is
likely to be close to the observed location, but large
errors are possible. The most commonly used distri-
bution is a circular normal distribution with the mean
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Figure 1: Example of two trajectories (slightly shifted
for visual clarity) with discrete Fréchet distance ε.
With precise points, all points on the circle are
matched to a point in the middle (left). With un-
certain points (all normally distributed with standard
deviation σ), the optimal coupling matches most ver-
tices to one centered at the same location (right).

at the observed location. The variance can be given
by the tracking device’s estimated error or based on
other measurements.

In the case of imprecise points, where the points are
known to be in a given region, efficient algorithms ex-
ist to compute the smallest possible discrete Fréchet
distance if the regions are d-dimensional balls or for
axis-parallel boxes under the L∞ norm [2]. Comput-
ing an upper bound for the discrete Fréchet distance
is NP-hard in the imprecise setting [6].

2 Preliminaries

Formally, a polygonal curve with uncertain points P
is a sequence of vertices P 1, . . . ,P n. P i is a random
point in Rd distributed according to a certain (known)
distribution. For example, a vertex may be obtained
by a GPS fix at a certain time and be normally dis-
tributed around the observed location with a certain
variance: P i ∼ N (µi, σ

2
i ). We assume that all P i are

independent.
Consider two polygonal curves with uncertain

points P and Q of length n and m respectively
and assume w.l.o.g. that n ≥ m. A cou-
pling C between P and Q is a sequence of pairs
(a1, b1), (a2, b2), . . . , (ak, bk) such that a1 = b1 = 1,
ak = n, bk = m and for each i ∈ {1, . . . , k − 1} one of
the following holds:

• ai+1 = ai and bi+1 = bi + 1,

• ai+1 = ai + 1 and bi+1 = bi, or

• ai+1 = ai + 1 and bi+1 = bi + 1.
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The discrete Fréchet distance of polygonal curves
P and Q is defined as

ddF (P,Q) = min
C

max
i∈{1,...,k}

|P ai
−Qbi |,

where C ranges over all couplings between P and Q.
The discrete Fréchet distance is usually computed

using the free space matrix: A table of size n · m,
where each cell (i, j) represents a pair of points pi, qj
from P and Q, respectively. This cell is free if |pi −
qj | ≤ ε. Then, ddF (P,Q) ≤ ε if and only if there is
a bimonotone path from (1, 1) to (n,m) visiting only
free cells.

If the distribution has unbounded support, there
are no upper or lower bounds on the value of the dis-
crete Fréchet distance (other than the trivial lower
bound of 0). Instead, its value is given by a probabil-
ity distribution. Ideally, one would like to be able to
compute properties of this distribution, e.g.

• distribution function F (ε) = P [ddF (P,Q) ≤ ε],

• probability density f(ε) = d
dεF (ε),

• quantiles F−1(ρ) = inf{ε ∈ R≥0 | ρ ≤ F (ε)}.
Note that if an algorithm for the distribution func-
tion is known, the others can be approximated using
standard numerical techniques.

Figure 1 shows a pair of trajectories where un-
certain points lead to a different result than precise
points, in the sense that the coupling with the highest
probability of achieving discrete Fréchet distance ≤ ε
is different from the coupling with precise points at
distance ε. For noisy data, the coupling produced us-
ing uncertain points seems more reasonable. In prac-
tice, e.g. when studying trajectories with GPS error,
one is often not so much interested in the exact value
of ε, but in finding a reasonable value for ε with a
coupling that provides a good match between the two
trajectories. In some cases, using uncertain points
avoids intuitively unappealing couplings in favour of
a more reasonable one that has a slightly larger dis-
tance.

One option to compute F (ε) is to fix the position
of each point, test whether ddF (P,Q) ≤ ε for these
locations and integrate each point over Rd, weighted
by the probability density of the point, i.e.:

F (ε) =

∫
Rd

fP 1
(p1) . . .

∫
Rd

fPn
(pn)∫

Rd

fQ1
(q1) . . .

∫
Rd

fQm
(qm)I(ε)

dqm . . . dq1dpn . . . dp1,

where I(ε) is the indicator function which is 1 if
ddF (P,Q) ≤ ε for the given coordinates and 0 oth-
erwise.

However, evaluating these d(n+m) nested integrals
to a reasonable precision requires time exponential in
the dimension [8], so other approaches are needed.
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Figure 2: Two trajectories with a coupling and the
corresponding free space matrix. The distribution
functions for the red and blue segments, as well as
each of the black points, can be computed indepen-
dently.

3 Evaluating F (ε) for a fixed coupling

We first consider how to evaluate FC(ε), i.e. the prob-
ability that a given coupling C realizes ddF (P,Q) ≤ ε.
C can be represented by a bimonotone path through
the free space matrix. We assume that this path
makes no 90◦ turns. Any path can be converted to
this form in linear time by diagonally going from the
cell before the turn to the cell after the turn. This
transformation can only increase FC(ε), since it re-
moves some diagonals in the coupling and does not
introduce any new ones.

A diagonal move from (i, j) to (i + 1, j + 1) in the
path breaks the trajectories up into two subtrajecto-
ries each such that

ddF (P,Q) = max{ddF (P [1 . . . i], Q[1 . . . j]),

ddF (P [i+ 1 . . . n], Q[j + 1 . . .m])}.

Since these are disjoint subtrajectories, the distribu-
tions of their discrete Fréchet distances are indepen-
dent. This property allows us to break the path up
into (possibly degenerate) horizontal and vertical seg-
ments which can be treated independently.

Let C1, . . . , Ck be the segments of the coupling de-
fined above and let FC`

(ε) be the probability that the
segment C` realizes a discrete Fréchet distance be-
tween the induced subtrajectories of at most ε. We
use independence to obtain FC(ε):

FC(ε) =

k∏
`=1

FC`
(ε).

As illustrated in Figure 2, there are three possible
cases for FC`

(ε), which are easy to deal with:

1. The segment contains only a single point. This
represents one point on each trajectory being
matched to each other, thus the question reduces
to FC`

(ε) = P
[
|P i −Qj | ≤ ε

]
.
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For normally distributed points the distance is
related to the noncentral chi-squared distribution
and this can be computed by evaluating its dis-
tribution function once.

2. A vertical segment represents a single point P i

being matched to several points Q[j . . . j′]. Here,
we fix P i, compute the probability that all other
points are close enough to the fixed point and
integrate P i over all possible locations:

FC`
(ε) =

∫
Rd

fP i(x)

j′∏
k=j

P [|Qk − x| ≤ ε] dx.

(1)

Evaluating these d nested integrals takes O(cd ·
(j′ − j)) time, where c depends on the number
of integration steps required, i.e. the integration
technique used, the desired precision and details
of the functions being integrated [8].

Again, for normally distributed points the prob-
ability can be computed using the distribution
function of the noncentral chi-squared distribu-
tion.

3. A horizontal segment can be processed symmet-
rically to case 2.

All FC`
(ε) and hence FC(ε) can be computed in

O(cd · (n + m)) time, where c again depends on the
number of integration steps in cases 2 and 3.

4 Computing the optimal coupling

In this section, we present a dynamic programming al-
gorithm that computes an optimal coupling for curves
P and Q and distance ε, that is a coupling C for which
FC(ε) is maximal, i.e. has the highest probability of
achieving discrete Fréchet distance at most ε. The
probability reached by this coupling is a lower bound
for the distribution function F (ε). Observe that the
optimal coupling is one of the form described before,
i.e. without 90◦ turns in the free space.

We use a table similar to the free space matrix, in
which each cell represents a prefix of each trajectory
and a path from the lower left corner to the cell rep-
resents a partial coupling. Using the independence of
path segments separated by a diagonal move, we can
decompose the optimal path to cell (i, j) into a final
horizontal or vertical segment Ck from (i′, j′) to (i, j)
(with i′ ≤ i, j′ ≤ j and either i′ = i or j′ = j), and
an optimal path to (i′ − 1, j′ − 1). These paths are
then connected using a diagonal edge.

Let p(i, j) denote the probability that the
optimal coupling ending at (i, j) realizes
ddF (τ1[1 . . . i], τ2[1 . . . j]) ≤ ε and let π(i, j) be
the coordinates (i′, j′) where this final segment

starts. If the final segment is vertical and (i′, j′) is
known, the probability is given by

pv(i, j) = p(i′ − 1, j′ − 1) · FCk
(ε)

= p(i′ − 1, j′ − 1) · P
[
ε ≥ max

k∈{j′,...,j}
|P i −Qk|

]
= p(i′ − 1, j′ − 1)

·
∫
Rd

fP i(x)

j∏
k=j′

P [|Qk − x| ≤ ε] dx.

If the final segment is horizontal, a similar expression
exists for ph(i, j) and p(i, j) = max{pv(i, j), ph(i, j)}.

To find (i′, j′) we search all possible predecessors,
i.e. all cells in the jth row or ith column preced-
ing (i, j), including (i, j) itself, select the (i′, j′) that
maximizes the probability and set p(i, j) and π(i, j)
accordingly. Then we construct the optimal coupling
by following the π(i, j) pointers back from (n,m).

The table contains O(n2) cells, for each cell we need
to test O(n) predecessors and computing p(i, j) for a
fixed predecessor takes O(cd ·(n)) time to evaluate the
integral as discussed before.

Theorem 1 Given two curves with uncertain points
P and Q of length n and a threshold ε, the cou-
pling that has maximum probability of realizing
ddF (P,Q) ≤ ε can be computed in time O(cdn4),
where c depends on the number of integration steps.

Instead of a single coupling, the best k couplings
can be computed by replacing p(i, j) and π(i, j) by
lists of length k. The running time increases by a
factor k.

Note that for fixed (i, j), FCk
(ε) is an increasing

function in i′ and j′, since fewer points are matched
to the fixed point as the segment becomes shorter.
Thus, better running times are achieved in practice
by searching predecessors backward from (i, j), stop-
ping the search when FCk

(ε) for some (i′, j′) becomes
smaller than the best known lower bound for p(i, j).

Instead of computing the optimal coupling for a
fixed distance ε, given a fixed probability ρ we can
compute the coupling C that realizes FC(ε) ≥ ρ for
the smallest value of ε among all couplings, by search-
ing over the distance values, using the dynamic pro-
gramming algorithm in each step.

5 Experiments

The algorithms described in the previous sections
were implemented in R and evaluated for several in-
puts. For the trajectories and ε shown in Figure 1,
these experiments confirm that the coupling shown on
the right indeed has a much higher probability (0.14)
of realizing ddF (P,Q) ≤ ε than the coupling used to
realize the discrete Fréchet distance for precise points
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Figure 3: Probability that optimal coupling realizes
ddF (P,Q) ≤ ε for the trajectories in Figure 1. The
discrete Fréchet distance for precise points is indicated
by the blue line.
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Figure 4: (a) Two curves with the coupling that real-
izes the minimal ddF (P,Q). Points are normally dis-
tributed with standard deviation σ. (b) Probability
that the optimal curve realizes ddF (P,Q) ≤ ε. The
discrete Fréchet distance for precise points is indicated
by the blue line.

(0.00057). The probability that the optimal coupling
realizes ddF (P,Q) ≤ ε is plotted against ε in Fig-
ure 3. The discrete Fréchet distance with uncertain
points tends toward slightly larger values than with
precise points. This is to be expected, since the dis-
crete Fréchet distance is a bottleneck distance and a
single outlying point can cause the distance to become
larger. The same can be observed for a different set
of curves in Figure 4.

The integration method used is crucial for the accu-
racy of the algorithm. The expression in Equation 1
is strongly peaked near the mean locations of the in-
put points, and the function must be sampled suffi-
ciently densely near these locations. Our implemen-
tation uses the R package cubature1.

The running time of the algorithm depends highly
on the input trajectories and ε. The reason for this
is that the heuristic described at the end of Section 4
was implemented, which in some cases terminates the
predecessor search much earlier than in the worst case.
In general the running time is lower for small ε than
for large values. For the examples shown, with n = 9,
the running time can be up to 1 minute.

1https://cran.r-project.org/web/packages/cubature/

6 Conclusion

We discussed the problem of computing the discrete
Fréchet distance between polygonal curves with un-
certain points. Many interesting questions remain
open. The main question is whether the distribution
function F (ε) can be computed efficiently. Another
direction for future work is improving the running
time of the algorithm presented, either in general or
for specific classes of trajectories.
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