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Coloring and L(2, 1)-labeling of unit disk intersection graphs
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Abstract

In this paper we give a family of on-line algorithms for
the classical coloring problem and the L(2, 1)-labeling
of unit disc intersection graphs. Our algorithms make
use of a geometric representation of such graphs and
are inspired by an algorithm of Fiala et al., but have
better competitive ratios. The improvement comes
from an application of a fractional and a b-fold color-
ing of the plane. Moreover, we give an off-line algo-
rithm improving the bound of the L(2, 1)-span of unit
disk intersection graphs in terms of the maximum de-
gree.

1 Introduction

Intersection graphs of families of geometric objects
attracted much attention of researches both for their
theoretical properties and practical applications (c.f.
McKee and McMorris [10]). For example intersection
graphs of families of discs, and in particular discs of
unit diameter (called unit disk intersection graphs),
play a crucial role in modeling radio networks. Apart
from the classical coloring, other labeling schemes
such as T -coloring and distance-constrained labeling
of such graphs are applied to frequency assignment in
radio networks [9, 13].

In this paper we consider the classical coloring and
the L(2, 1)-labeling. The latter asks for a vertex la-
beling with non-negative integers, such that adjacent
vertices get labels that differ by at least two, and ver-
tices at distance two get different labels. The span of
an L(2, 1)-labeling is the maximum label used. The
L(2, 1)-span of a graph G, denoted by λ(G), is the
minimum span of an L(2, 1)-labeling of G (note that
the number of available labels is λ(G) + 1, but some
may not be used).

We say that a graph coloring algorithm is on-line
if the input graph is not known a priori, but is given
vertex by vertex (with all edges adjacent to already
revealed vertices). Each vertex is colored at the mo-
ment when it is presented and its color cannot be
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changed later. On the other hand, off-line coloring
algorithms know the whole graph before they start
assigning colors. The on-line coloring can be much
harder than off-line coloring, even for paths. For an
off-line coloring algorithm (off-line L(2, 1)-labeling al-
gorithm, resp.), by the approximation ratio we mean
the worst-case ratio of the number of colors used by
this algorithm (the largest label used by this algo-
rithm, resp.) to the chromatic number of the graph
(λ(G), respectively). For on-line algorithms, the same
value is called the competitive ratio.

A unit disk intersection graph G can be colored
off-line in polynomial time with 3ω(G) colors [12]
(where ω(G) denotes the size of a maximum clique)
and on-line with 5ω(G) colors [11, 12]. Fiala et al. [3]
presented an on-line algorithm that finds an L(2, 1)-
labeling of a unit disk intersection graph with span
not exceeding 25ω(G). The algorithm is based on a
special pre-coloring of the plane, that resembles col-
orings studied by Exoo [2], inspired by the classical
Hadwiger-Nelson problem [8]. Our main result are
on-line algorithms for the coloring and the L(2, 1)-
labeling of unit disc intersection graphs with better
competitive ratios than previous algorithms. They
are inspired by [3], although a b-fold coloring of the
plane (see [7]) is used instead of a classical coloring. In
particular, in the case of using 1-fold coloring we ob-
tain the algorithm from [3]. Our algorithm colors (in
the classical sense) unit disc intersection graphs with
large maximum clique, using less than 5ω(G) colors
and hence it is the best currently known approxima-
tion on-line coloring algorithm for such graphs. For
L(2, 1)-labeling, in the case of 1-fold coloring of the
plane, our algorithm gives a labeling with span not
exceeding 20ω(G). Using b-fold coloring for b > 1 we
obtain even better results.

For general graphs, Griggs and Yeh proved that
λ(G) ≤ ∆(G)2 + 2∆(G) and conjectured that λ(G) ≤
∆(G)2. Shao et al.[14] showed λ(G) ≤ 4

5∆(G)2 +
2∆(G) if G ∈ UDG. Actually, they gave an on-line
algorithm that finds an L(2, 1)-labeling ofG with span
at most 4

5∆(G)2 + 2∆(G). We managed to improve
this bound to 3

4∆2 + 3(∆ − 1), in the off-line case.
Moreover, we show that the algorithm from [3] im-
plies the bound 18∆ + 18, which is better for ∆ ≥ 22.

Throughout the paper we always assume that the
input unit disk intersection graph is given along with
its geometric representation. In practical application
for mobile Wi-Fi routers representation can be found
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with methods from [5].

2 Preliminaries

For an integer n, we define [n] := {1, . . . , n}. A func-
tion c : V → [k] is a k-coloring of G = (V,E) if for
any xy ∈ E holds c(x) 6= c(y). By d(u, v) we denote
the number of edges on the shortest u-v–path in G.

For a sequence of unit discs in the plane (Di)i∈[n] we
define its intersection graph by G((Di)i∈[n]) = ({vi :
i ∈ [n]}, E), where vi is the center of Di for every
i ∈ [n] and vivj ∈ E iff Dvi ∩ Dvj 6= ∅. Notice that
vivj ∈ E if and only if the Euclidean distance be-
tween vi and vj , denoted by dist(v1, v2), is at most
one. By UDG we mean the class of graphs that admit
a representation by intersecting unit disks.

For a minimization on-line algorithm alg, by cr(alg)
we denote its competitive radio, which is the supre-

mum of alg(G)
opt(G) over all instances G, where alg(G) is

the value of the solution given by the algorithm for
instance G and opt(G) is the optimal solution for in-
stance G. For the classical coloring we use fact that
any coloring requires at least ω(G) colors, where ω(G)
denotes the size of the largest clique of G. By Gω we
denote the class of graphs with largest clique of size at
least ω and by cr(alg(Gω)) we denote the supremum

of alg(G)
opt(G) over all graphs G ∈ Gω.

A tiling is a partition of the plane into convex poly-
gons with partially removed boundary, called tiles,
such that every two points from one tile are at dis-
tance less than one. If we have b tilings, then by a
subtile we mean a non-empty intersection of b tiles,
one from each tiling. We will use a hexagon as a tile
and hexagon tiling, just as Fiala et al. [3].

A function ϕ : R2 → [k] is called a coloring of
the plane with the color set [k] if for any two points
p1, p2 ∈ R2 with dist(p1, p2) = 1 holds ϕ(p1) 6= ϕ(p2).

Definition 1 A function ϕ = (ϕ1, . . . , ϕb) where ϕi :
R2 → [k] for i ∈ [b] is called a b-fold coloring of the
plane with color set [k] if

• for any point p ∈ R2 and i, j ∈ [b], if i 6= j, then
ϕi(p) 6= ϕj(p),

• for any two points p1, p2 ∈ R2 with dist(p1, p2) =
1 and i, j ∈ [b] holds ϕi(p1) 6= ϕj(p2).

The function ϕi for i ∈ [b] is called an i-th layer of ϕ.

Notice that a coloring of the plane is a 1-fold coloring
of the plane. A coloring of a plane ϕ is called tiling-
based if there exists a tiling such that each tile is
monochromatic and adjacent tiles have different col-
ors. A b-fold coloring of a plane ϕ = (ϕ1, . . . , ϕb) is
called tiling-based if for every i ∈ [b] coloring ϕi is
tiling-based.

For technical reasons, we shall consider L(2, 1)-
labelings with labels starting with one. To avoid con-
fusion, we shall call such labelings L(2, 1)-colorings.
Formally, a k-L(2, 1)-coloring of a graphG is any func-
tion c : V → [k] such that

1. |c(v) − c(w)| ≥ 1 for all v, w ∈ V (G) such that
d(u,w) = 2,

2. |c(v) − c(w)| ≥ 2 for all v, w ∈ V (G) such that
vw ∈ E(G).

Definition 2 A b-fold coloring of the plane ϕ is called
a b-fold L∗(2, 1)-coloring of the plane with color set
[k] if for any two points p1, p2 ∈ R2:

• dist(p1, p2) = 1 ⇒ ∀i1,i2∈{1,...,b} 2 ≤ |ϕi1(p1) −
ϕi2(p2)| < k − 1,

• 1 < dist(p1, p2) ≤ 2 ⇒ ∀i1,i2∈{1,...,b} 1 ≤
|ϕi1(p1)− ϕi2(p2)|.

By L∗(2, 1)-coloring of the plane we mean 1-fold
L∗(2, 1)-coloring of the plane.

3 On-line coloring

The main idea of the algorithm is as follows. We
start with some fixed tiling-based b-fold coloring ϕ =
(ϕ1, . . . , ϕb) of the plane with colors [kϕ]. When a
disc D is read, it is assigned to one of the b layers of
ϕ (we try to distribute discs to layers as uniformly as
possible). Then a tile from this layer that contains a
center of D is found. The vertex corresponding to D
is colored with the color of this tile plus kϕ multiplied
by the number of vertices previously assigned to this
tile.

Algorithm Colorϕ((Di)i∈[n])
1. ForEach i ∈ [n]
2. Read Di, let vi be the center of Di

3. ForEach r ∈ [b] let Tr(vi) be the tile from the layer
r containing vi
4. `(vi)← 1+(|{v1, . . . vi−1}∩

⋂
r∈[b] Tr(vi)| (mod b))

5. t(vi) ← |{u ∈ {v1, . . . vi−1} ∩ T`(vi)(vi) : `(u) =
`(vi)}|
6. c(vi)← ϕ`(vi)(vi) + kϕ · t(vi)
7. Return c

Theorem 1 Let ϕ be a tiling-based b-fold coloring
of the plane with color set [kϕ], and (Di)i∈[n] be a
sequence of unit discs. Algorithm Colorϕ((Di)i∈[n])
returns a coloring of G := G((Di)i∈[n]). Moreover, if
ϕ is a b-fold L∗(2, 1)-coloring of the plane, then Algo-
rithm Colorϕ((Di)i∈[n]) returns an L(2, 1)-coloring of
G.

Theorem 2 Let ϕ be a b-fold coloring of the plane
with color set [kϕ], with at most γϕ subtiles in one
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tile, and let (Di)i∈[n] be a sequence of unit discs. Al-
gorithm Colorϕ( (Di)i∈[n]) returns coloring of G :=
G((Di)i∈[n]) with the highest color not exceeding

kϕ · bω(G)+(b−1)γϕ
b c.

Proof. Let γ = γϕ and let vi be a vertex that got
the biggest color. Consider the moment of the course
of the algorithm when vertex vi was colored. Let
`(vi), t(vi), c(vi) be defined as in the algorithm. Let
T = T`(vi) be the tile from the `(vi)-th layer con-
taining vi. Let S1, . . . Sγ be the subtiles of T . Let
sq = |{u ∈ {v1, . . . vi} : u ∈ Sq}| and sq(`(vi)) =
|{u ∈ {v1, . . . vi} : u ∈ Sq, `(u) = `(vi)}| for q ∈ [γ].

Notice that, thanks to the formula in line 4 of the
algorithm, vertices in the subtile

⋂
r∈[b] Tr(vi) are al-

most uniformly distributed among layers.
The key observation is that by the definition of `(vi)

we get sq ≥ b·(sq(`(vi))−1)+`(vi). Now we are ready
to estimate the number of vertices from {v1, . . . , vi}
contained in T`(vi). Notice that these vertices are pair-
wise at distance less than one and hence they form a
clique. We obtain

ω(G) ≥
γ∑
q=1

sq ≥
γ∑
q=1

b · (sq(`(vi))− 1) + `(vi)

≥b ·

[
γ∑
q=1

(sq(`(vi))− 1)

]
+ γ

=b · (t(vi) + 1)− (b− 1)γ

and thus

t(vi) ≤
⌊
ω(G) + (b− 1)γ

b
− 1

⌋
.

Finally we obtain c(vi) ≤ kϕ · bω(G)+(b−1)γ
b c which, by

the choice of vi, is the highest color used. �

This shows that is it crucial to construct good b-
fold colorings of the plane. We are able to do this if b
is a square number.

Theorem 3 For h ∈ N+ there exists a tiling-based

h2-fold coloring of the plane with
⌈
( 2√

3
+ 1) · h

⌉2
col-

ors and γϕ = 6h2.

Directly from Theorems 2 and 3 we obtain:

Corollary 4 For the h2-fold ϕ coloring of the plane
from Theorem 3 we have

cr(Colorϕ(Gω)) ≤⌈
( 2√

3
+ 1) · h

⌉2
ω

·
⌊
ω + (h2 − 1)6h2

h2

⌋
= 4.65 +O

(
1

h

)
+O

(
h4

ω

)
.

Notice that for h = 5 and graphs G with ω(G) ≥
108901, the competitive ratio of the algorithm is less
than 5.

Analogously to Theorem 3, we are able to construct
a good b-fold L∗(2, 1)-coloring of the plane.

Theorem 5 There exists b-fold tiling-based L∗(2, 1)-
coloring ϕ of the plane for

1. b = 1 with color set [20] (see Figure 1),

2. b = 2 with color set [34] and the parameter γϕ =
4 (see Figure 2),

3. b = 3 with color set [49] and the parameter γϕ =
6,

4. b = h2 for h ∈ N with 3ρ2 + 1 colors, where

ρ =
⌈
h( 2√

3
+ 1) + 1

⌉
, and γϕ = 6h2

1 4 7 10 3 6 9 2 5 8 1

14 17 20 13 16 19 12 15 18 11

6 9 2 5 8 1 4 7 10 3 6

1 1

Figure 1: 1-fold L∗(2, 1)-coloring of the plane

1 9 7 15 5 13 3 11 1

11

14 4 12 2 10 8 16 6 14

18 26 24 32 22 30 20 28

31 21 29 19 27 25 33 23

Figure 2: 2-fold L∗(2, 1)-coloring of the plane

Corollary 6 For b ∈ N and b-fold L∗(2, 1)-
colorings ϕ of the plane from Theorem 5, the value
cr(Colorϕ(Gω)) is at most:

1. 10 + 10
2ω−1 for ϕ from Theorem 5.1,

2. 8.5 + 76.5
2ω−1 for ϕ from Theorem 5.2,

3. 8 1
6 + 204.17

2ω−1 for ϕ from Theorem 5.3,

4. (3dh( 2√
3

+ 1) + 1e2 + 1)ω+6h2(h2−1)
h2(2ω−1)

= 6.97+O
(
1
h

)
+O

(
h4

ω

)
for ϕ from Theorem 5.4.
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4 Off-line L(2, 1)-labeling

In this section we give an improvement for the fol-
lowing theorem by Shao et al. [14], which partially
answers the question of Calamoneri [1, Section 4.7.1].

Theorem 7 (Shao et al. [14]) If G ∈ UDG, then
λ(G) ≤ 4

5∆2 + 2∆.

By ∆ we denote the maximum degree of the input
graph G. Fix some vertex v. By VL we denote the
half-plane lying left of v (including the boundary). A
neighbor w of v is a left neighbor if w ∈ VL. A neigh-
bor w of v is important, if it is a left neighbor of v, or
w has a neighbor w′ ∈ VL, such that dist(w′, u) > 1
for every left neighbor u of v (in particular, w′ is not
a neighbor of v). It is easy to verify that each vertex
v has at most 3 pairwise non-adjacent left neighbors.
The following lemma is the strengthening of this ob-
servation.

Lemma 8 Let G ∈ UDG. Each vertex has at most
4 pairwise non-adjacent important neighbors.

Now we can present the first bound.

Lemma 9 Let G ∈ UDG and ∆ ≥ 7. Then λ(G) ≤
3
4∆2 + 3(∆− 1).

Proof. We use a greedy algorithm, processing ver-
tices from left to right. Consider a vertex v. By N1

we denote the set of the left neighbors of v, and by
N2 we denote the set of important right neighbors of
v and by N2 we denote the set of vertices left of v,
which are not in N1, but share a common neighbor
with v. Observe that our algorithm will never use a
label bigger than 3|N1|+|N2|. Let d := |N1∪N2| ≤ ∆.

Suppose that N2 6= ∅. Let H = G[N1 ∪ N2]. By
Lemma 8, it does not contain an independent set of
size 5, so its complement, H̄, is K5-free. By the
famous theorem of Turán, the maximum number of

edges in H̄ is 3
4
d2

2 . So the number of edges in H is

at least
(
d
2

)
− 3

4
d2

2 = d
2

(
d
4 − 1

)
. This gives us the

following: |N2| ≤ d(∆ − 1) − 2 · d2
(
d
4 − 1

)
≤ 3

4∆2.
Since |N2| > 0 and thus |N1| ≤ ∆− 1, we obtain that
3|N1|+ |N2| ≤ 3(∆− 1) + 3

4∆2 = 3
4∆2 + 3∆− 3.

It is easy to verify that if N2 = ∅, then 3|N1| +
|N2| ≤ 2

3∆2 + 3∆ < 3
4∆2 + 3∆− 3 for ∆ ≥ 7. �

Fiala et al. [3] proved that if G ∈ UDG, then
λ(G) ≤ 18ω(G). Since ω(G) ≤ ∆ + 1, we obtain
the following corollary.

Corollary 10 Let G be a unit disk graph with max-
imum degree at most ∆. Then λ(G) ≤ 18∆ + 18.

Combining the bound λ(G) ≤ ∆2 + 2∆ − 2 by
Gonçalves [4], the bound from Lemma 9 and the
bound from Corollary 10, we get the following.

Theorem 11 If G ∈ UDG, then λ(G) ≤ f(∆) for

f(∆) =


∆2 + 2∆− 2 if ∆ < 7,
3
4∆2 + 3∆− 3 if 7 ≤ ∆ < 22,

18∆ + 18 if ∆ ≥ 22.
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