
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

New Results on Trajectory Grouping under Geodesic Distance∗

Maarten Löffler† Frank Staals‡ Jérôme Urhausen§

Abstract

We study grouping of entities moving amidst obsta-
cles, extending the recent work of Kostitsyna et al. [5].
We present an alternative algorithm that can compute
the Reeb-graph, a graph which captures when and
how the partition of the entities into groups changes,
when the entities move amidst arbitrary polygonal ob-
stacles. Our new algorithm is significantly faster than
the algorithm of Kostitsyna et al. when the number
of entities is significantly larger than the total com-
plexity of the obstacles. Furthermore, we consider a
restricted setting in which the obstacles are big com-
pared to ε: the parameter determining when entities
are close enough together to be in the same group.
We show that in this setting the Reeb-graph is much
smaller, and we can compute it much faster, than in
the case of general obstacles.

1 Introduction

In recent years, trajectory analysis has become a pop-
ular and well studied topic in computational geome-
try [1, 2, 3, 5]. We consider the problem of finding
all (maximal) groups from the trajectory data. In-
tuitively, a group is a sufficiently large set of enti-
ties that travel together for a sufficiently long time.
Buchin et al. [2] formalize this notion of groups, and
show how to compute all maximal groups efficiently.
A group is said to be maximal if the time interval on
which the entities are together is maximal in length,
and there is no group that contains it and stays to-
gether during the same time interval. Recently, Kos-
titsyna et al. [5] significantly extended the work of
Buchin et al. by considering the environment in which
the entities move. In particular, they study grouping
when the entities move amidst various types of obsta-
cles (see Table 1). So, when we decide if two entities
are close enough together, we measure the distance us-
ing the geodesic distance (i.e. the length of the small-
est obstacle-avoiding path) rather than the Euclidean
distance. We continue the work of Kostitsyna et al. in
two ways. First, we present an improved algorithm for
the case in which the entities move amidst arbitrary

∗FS is supported by the Danish National Research Founda-
tion under grant nr. DNRF84.
†Dept. of Information and Computing Sciences, Utrecht

University, m.loffler@uu.nl
‡MADALGO, Aarhus University, f.staals@cs.au.dk
§Dept. of Informatics, KIT, jerome.urhausen@gmail.com

a b c

ε

ε

ε

ε

(a) Entities a, b and c move
along a linear trajectory
around an obstacle. The
colors of the entities indicate
their positions at important
moments. The circular forms
indicate the groups at those
moments.

a

b
c

a, b

a, b, c

b, c

(b) The Reeb graph for
entities a, b, and c. The
colors of the vertices cor-
respond to the colors used
in the figure on the left
in order to indicate times-
tamps.

Figure 1: Example of entities moving in the two-
dimensional space with obstacles and the correspond-
ing Reed graph.

obstacles, but their total complexity m is small com-
pared to the number of entities n. Second, we consider
a new environment setting, in which the obstacles are
“large” (but may be arbitrarily complex and close to-
gether). This allows us to give a much faster algo-
rithm than in the case of arbitrary obstacles. Next,
we present the required notation and definitions fol-
lowing Buchin et al. [2] and Kostitsyna et al. [5], and
formally define our problem, so that we can state our
results more precisely.

Notation and Problem Definition. We are given a
set X of n entities, each moving along a piecewise
linear trajectory with τ vertices, and a set of pairwise
disjoint polygonal obstacles O = {O1, ..,Oh}. Let m
denote the total complexity of O.

To determine if a set of entities may form a group,
we have to decide if they are close together. We model
this by a parameter ε. Two entities a and b are di-
rectly connected at time t if they are within geodesic
distance ε from each other, that is, ςab(t) ≤ ε. A set
of entities X ′ is ε-connected at time t if for any pair

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



32nd European Workshop on Computational Geometry, 2016

Simple polygon O(τn2(log2m+ log n) +m)
Well-spaced
obstacles

O(τn2m log n)

General
obstacles

O(τn2m2 log n+m2 logm)

2ε-big obstacles O(τ(n2(log n+ log2m)
+nm logm))

ε-big obstacles O(τn2(polylogm+ log n)
+m2 logm)

General O(τ(n2m+ λ4(n)m3)
obstacles (log n+ logm))

Table 1: The running time for computing the Reeb
graph for various obstacle configurations. The top
ones are from [5], the bottom ones are new. The λs(n)
term denotes the maximum length of a Davenport-
Schinzel sequence of order s consisting of n symbols.

a, b ∈ X ′ there is a sequence a = a0, a1, .., ak = b such
that ai and ai+1 are directly connected. We refer to
a time at which a and b become directly connected
or disconnected as an ε-event. At such a time the
distance between a and b is exactly ε. If an ε-event
also connects or disconnects the maximal ε-connected
set(s) containing a and b, it is a critical event. A
(maximal) ε-connected set of entities X ′ is a group if
it is ε-connected at any time t in a time interval of
length at least δ, and it has at least a certain size.

The algorithm of Buchin et al. [2] proceeds in two
phases. In the first phase, it computes the Reeb-graph
R capturing the connectivity between the entities. In
the second phase, it computes all maximal groups us-
ing only information in the Reeb-graph. So, once we
compute R, we can use the algorithm from Buchin
et al. [2] to compute all maximal groups. An edge
(u, v) in R corresponds to a maximal set of entities
that is ε-connected during time interval [tu, tv]. The
Reeb-graph has a vertex v at time tv if (and only
if) two maximal sets of ε-connected entities merge
or split. A vertex corresponds uniquely to a critical
event. See Fig. 1.

Results and Organisation. We start in Section 2
with the new algorithm for the case that the entities
move amidst general obstacles. In Section 3 we for-
malize what it means for an obstacle to be ε-big, and
show that if the obstacles are ε-big, the Reeb graph
has low complexity. Furthermore, we show that we
can compute the Reeb-graph efficiently in such a set-
ting. Omitted proofs and details can be found in [8].

2 An Algorithm for General Obstacles

In this section we present an O(τ(n2m +
λ4(n)m3)(log n + logm)) time algorithm to compute

the Reeb-graph when the entities move amidst
arbitrary polygonal obstacles. This improves the al-
gorithm of Kostitsyna et al. [5] if the total complexity
m of the obstacles is ω(n2/λ4(n)).

Most existing algorithms to compute the Reeb
graph R first determine all ε-events, and use them
to maintain the entity-graph while varying the time
t. The entity-graph G(t) at time t is the graph whose
vertices are the entities, and whose edges connect two
entities if and only if they are directly connected at
time t. Clearly, G(t) changes only at ε-events. The
Reeb graph corresponds exactly to the changes in con-
nected components in the entity-graph. That is, there
is a critical event at time t if and only if the con-
nected components in the entity graph change at time
t. However, the number of critical events, and thus
the size of R, is much smaller than the number of ε-
events [5]. Hence, we wish to reduce the number of
ε-events that we have to consider.

The ER-graph. Our new algorithm will still use the
idea of the entity-graph, but we add new vertices, cor-
responding to regions, that allow us to handle multiple
ε-events at once. For our new graph, the entity-region
graph (ER-graph), we still require that two entities
are in the same connected component if and only if
they are ε-connected.

The regions corresponding to the new vertices are
built around the obstacles such that multiple ε-events
involving entities in these regions only induce few crit-
ical events. To achieve that, we subdivide for each
obstacle vertex v the area within geodesic ε-distance
of v using the shortest path map originating at v [4].

Claim. We can further subdivide the shortest path
maps into O(m2) regions such that

• each region has constant complexity,
• each region has (geodesic) diameter at most ε,

and
• each entity enters and exits a region at most once

per time step.

In the ER-graph we then only directly connect en-
tities by an edge if they are closer than ε and can see
each other, i.e. if the shortest path between them does
not use an obstacle vertex. All other connections use
region vertices. We connect a region to all the enti-
ties it contains and we connect two regions belonging
to the same obstacle vertex v if and only if they con-
tain entities for which the shortest path between them
passing through v has length at most ε. See Fig. 2 for
an example. The use of regions drastically reduces
the number of events to handle.

There are O(τn2m) events at which an edge be-
tween two entities appears or disappears in the ER-
graph. For edges between an entity and a region there
are O(τnm2) such events and for edges between two
regions there are O(τλ4(n)m3) such events.



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

ε

v

P

Q

R

≤ε

>ε

Figure 2: Entities inside regions corresponding to an
obstacle vertex v at a fixed time t. Two shortest paths
passing through v between entities in different regions
are indicated in red and green. In the corresponding
ER-graph the regions Q and R are connected by an
edge, but P and R are not.

Algorithm The algorithm runs as follows. We first
build the regions for each obstacle vertex. This gives
us all the vertices of the ER-graph. Then we deter-
mine the events at which the edges of the ER-graph
are added or removed and sort them. Using these
events we keep an updated version of the ER-graph
which allows us to build the Reeb graph. The re-
gions can be built in O(m2 logm) time. The deter-
mination and sorting of the events takes O(τ(n2m +
λ4(n)m3) log(nm)) time. In order to keep the con-
nected components of the ER-graph updated we need
O(τ(n2m+ λ4(n)m3) log(n+m2)) time with the ap-
proach proposed by Parsa [7], because the ER-graph
has at most O(n+m2) vertices.

Theorem 1 Let X be a set of n entities, each mov-
ing amidst a set of obstacles O along a piecewise lin-
ear trajectory with τ vertices. The Reeb graph can
be computed in O(τ(n2m+ λ4(n)m3)(log n+ logm))
time.

3 Big Obstacles

In this section we investigate a new class of obstacles
for which we can compute the Reeb graph efficiently.
Namely, ε-big obstacles. An ε-big obstacle is an ob-
stacle that does not fit into a strip of width ε of any
orientation. We now show that if all obstacles are big
there are only few ε-events, and thus the Reeb-graph
is small, and we can compute it efficiently.

Two obstacle avoiding paths P1 and P2 have the
same homotopy type, if and only if we can continuously
deform P1 into P2 while remaining obstacle avoiding.

Lemma 2 Let a and b be two entities moving amidst
a set of ε-big obstacles. Let I be a time interval in
which both a and b move linearly, and t1, t2 ∈ I be
two times at which their geodesic distance is at most

ε

a

b

`1

`2

P1

P2

Figure 3: The construction showing that the obstacle
can not be ε-big.

ε. The geodesics P1 = ςab(t1) and P2 = ςab(t2) have
the same homotopy type.

Proof. Assume, by contradiction, that P1 and P2

have different homotopy types. It follows that the
region R bounded by a(t1)a(t2), P2, b(t2)b(t1), and
P1 contains at least one obstacle. Let `1 be an outer
tangent to P1 and P2 (See Fig. 3), and assume with-
out loss of generality that `1 is horizontal, and that
P1 and P2 lie below `1. Let `2 be the horizontal line
at distance ε below `1.

We know that for i = 1, 2, every two points on
Pi are at Euclidean distance at most ε, because the
length of Pi is at most ε. Since both P1 and P2 have a
common point with `1, all points on P1 and P2 lie on
or above `2. It follows that a(t1)a(t2) and b(t2)b(t1)
also lie on or above `2. This means that the strip
between `1 and `2 contains the region R, and thus
at least one ε-big obstacle. Contradiction. It follows
that P1 and P2 have the same homotopy type. �

Theorem 3 Let X be a set of n entities, each moving
amidst a set of ε-big obstacles O along a piecewise
linear trajectory with τ vertices. The number of ε-
events, and thus the size of the Reeb-graph, is at most
O(τn2).

Proof. There are O(n2) pairs of entities and for each
pair a, b there are O(τ) time intervals in which both of
them move along a line with constant speed. Consider
such an interval I, and let t1, t2 ∈ I be two ε-events
involving a and b. By Lemma 2, the geodesics ςab(t1)
and ςab(t2) have the same homotopy type. Kostitsyna
et al. [5] effectively show that if the homotopy type of
the path between a and b is fixed, the length of such
a path is a convex function in t, and thus, there are
at most two ε-events involving a and b in interval I.
The theorem then follows. �

3.1 Computing ε-events among 2ε-big obstacles

When all obstacles are 2ε-big we can efficiently com-
pute the ε-events as follows. For each entity a and
each interval I when a moves along an edge s, consider
the geodesic ε-surrounding S of s, that is, all points



32nd European Workshop on Computational Geometry, 2016

ε

s

Figure 4: A simple polygon (green) containing the
geodesic ε-surrounding (blue) of a trajectory edge s.

whose geodesic distance to s is at most ε. Clearly, all
ε-events involving a in interval I are contained in S.
Furthermore, since all obstacles are 2ε-big, S is sim-
ple; i.e. it contains no holes. See Fig. 4. We now con-
struct a simple polygon P containing S, and compute
ε-events involving a using the algorithm for entities
moving in a simple polygon by Kostitsyna et al. [5].

We can construct P in O(m logm) time as follows.
We first approximate the Euclidean ε-surrounding of
s with the smallest rectangle possible. Then we cal-
culate the intersections between the rectangle and the
obstacle edges and sort them clockwise. Starting from
the obstacle vertex that is the closest to s we can then
walk along the boundary of the simple polygon P us-
ing these intersection points.

Since we have O(τn) trajectory edges, building all
these polygons takes O(τnm logm) time. Then, for
each pair of entities and each time interval in which
they travel at constant speed, we take the polygon of
one of the entities and determine the interval during
which the other entity is inside this polygon. There-
fore computing each of the O(τn2) ε-events can then
be made using parametric search in O(log2m) time
per event [6]. Once we have determined and sorted all
ε-events we can build the Reeb graph using O(log n)
time per event. We conclude:

Theorem 4 Let X be a set of n entities, each moving
amidst a set of 2ε-big obstacles O along a piecewise
linear trajectory with τ vertices. The Reeb graph can
be computed in O(τ(n2(log n+ log2m) + nm logm))
time, where m is the total complexity of O.

3.2 Computing ε-events among ε-big obstacles

The main difference to the previous case is that an
ε-big obstacle can be completely contained inside the
Euclidean ε-surrounding of the segment. This means
that the previously taken approach of building a poly-
gon by approximating the Euclidean ε-surrounding
yields a polygon with holes. Thus for a pair of enti-
ties we do not know the homotopy type of the shortest
path yet. Therefore another approach is taken here.

The global idea of our approach is as follows. We
compute all Euclidean ε-events, ignoring the obsta-

cles. This gives us O(τn2) time intervals during which
two entities, say a and b, are within Euclidean dis-
tance ε and move linearly. Any geodesic ε-event oc-
curs within such intervals [tf , tg]. Furthermore, by
Lemma 2 there are at most two such events per inter-
val. Then the following claim holds.
Claim. For any time t ∈ [tf , tg], there are only O(1)
choices for the first and last vertex on the geodesic
between a(t) and b(t).

The algorithm tries all such pairs using the short-
est path maps [4] to find the true geodesic at time t.
Hence, for a given time t, we can test if the shortest
path between a(t) and b(t) has length at most ε and if
the derivative is positive or negative in O(polylogm)
time. This means that we can use parametric search
to find the times at which the geodesic distance is
exactly ε [5]. Overall, we conclude:

Theorem 5 Let X be a set of n entities, each mov-
ing amidst a set of ε-big obstacles O along a piecewise
linear trajectory with τ vertices. The Reeb graph can
be computed in O(τn2(polylogm+ log n) +m2 logm)
time, using O(m2) space, where m is the total com-
plexity of O.

References

[1] M. Benkert, J. Gudmundsson, F. Hübner, and
T. Wolle. Reporting flock patterns. Computational
Geometry, 41(3):111–125, 2008.

[2] K. Buchin, M. Buchin, M. van Kreveld, B. Speckmann,
and F. Staals. Trajectory grouping structure. Journal
of Computational Geometry, 6(1):75–98, 2015.

[3] J. Gudmundsson, M. van Kreveld, and B. Speckmann.
Efficient detection of patterns in 2d trajectories of
moving points. Geoinformatica, 11(2):195–215, 2007.

[4] J. Hershberger and S. Suri. An Optimal Algorithm for
Euclidean Shortest Paths in the Plane. SIAM Journal
on Computing, 28(6):2215–2256, 1999.

[5] I. Kostitsyna, M. van Kreveld, M. Löffler, B. Speck-
mann, and F. Staals. Trajectory grouping structure
under geodesic distance. In 31st Int. Symp. on Comp.
Geom., volume 34 of LIPICS, pages 674–688, 2015.

[6] N. Megiddo. Combinatorial optimization with ratio-
nal objective functions. Mathematics of Operations
Research, 4(4):414–424, 1979.

[7] S. Parsa. A deterministic O(m log m) time algorithm
for the reeb graph. Discrete & Computational Geom-
etry, 49(4):864–878, 2013.

[8] J. Urhausen. New results on trajectory grouping under
geodesic distance. https://fstaals.net/research/

bachelor_thesis_jerome.pdf, 2015.

https://fstaals.net/research/bachelor_thesis_jerome.pdf
https://fstaals.net/research/bachelor_thesis_jerome.pdf

	Introduction
	An Algorithm for General Obstacles
	Big Obstacles
	Computing -events among 2-big obstacles
	Computing -events among -big obstacles


