
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Time-Space Trade-offs for Triangulating a Simple Polygon∗

Boris Aronov† Matias Korman‡ Simon Pratt§ André van Renssen¶ ‖ Marcel Roeloffzen¶ ‖

Abstract

An s-workspace algorithm is an algorithm that has
read-only access to the values of the input, write-only
access to the output and only uses O(s) additional
words of space. We give a randomized s-workspace
algorithm for triangulating a simple polygon P of n
vertices, for any s ∈ Ω(log n) ∩O(n). The algorithm
runs in O(n2/s) expected time. We also extend the
approach to compute other similar structures such as
the shortest-path map (or tree) of any point p ∈ P ,
or to partition P using only diagonals of the polygon
so that the resulting sub-polygons have Θ(s) vertices
each.

1 Introduction

Triangulation of a simple polygon, often used as a
preprocessing step in computer graphics, is performed
in a wide range of settings including on embedded
systems like the Raspberry Pi or mobile phones. Such
systems frequently run read-only filesystems for secu-
rity reasons and have very limited working memory.
An ideal triangulation algorithm for such an environ-
ment would allow for a trade-off in performance in
time versus working space.

These memory constraints can be modeled by the
so-called s-workspace model of computation frequently
used in the literature (see, for example, [2, 5, 6, 10]).
In this model the input data is given in a read-only
array or similar structure, and the output we produce
must be written to write-only memory.

In our case, the input is a simple polygon P ; let
v1, v2, . . . , vn be the vertices of P in clockwise order
along the boundary of P . We assume that, given an
index i, in constant time we can access the coordinates
of the vertex vi. We also assume that the usual word
RAM operations can be performed in constant time

∗Work on this paper by B. A. has been partially supported
by NSF Grants CCF-11-17336 and CCF-12-18791. M. K. was
supported in part by the ELC project (MEXT KAKENHI No.
24106008). S. P. was supported in part by the Ontario Graduate
Scholarship and The Natural Sciences and Engineering Research
Council of Canada.
†Tandon School of Engineering, New York University, New

York, USA.
‡Tohoku University, Sendai, Japan.
§Cheriton School of Computer Science, University of Water-

loo, Canada.
¶National Institute of Informatics (NII), Tokyo, Japan.
‖JST, ERATO, Kawarabayashi Large Graph Project.

(such as, given i, j, k, finding the intersection point
of the line passing through vertices vi and vj and the
horizontal line passing through vk).

In addition to the read-only data, an s-workspace
algorithm can use O(s) variables during its execution,
for some parameter s determined by the user. Implicit
memory consumption (such as the stack space needed
in recursive algorithms) must be taken into account
when determining the size of a workspace. We assume
that each variable or pointer is stored in a data word of
Θ(log n) bits. Thus, equivalently, we can say that an
s-workspace algorithm uses O(s log n) bits of storage.
In this model, the aim is to design an algorithm whose
running time decreases as s grows. Such algorithms
are called time-space trade-off algorithms [14].

Previous Work

Several variants of this model have been studied (we
refer the interested reader to [11] for an overview). In
the following we discuss the results related to triangula-
tions. The concept of memory-constrained algorithms
was introduced to the computational geometry com-
munity by the work of Asano et al. [4]. Among other
results, they presented an algorithm for triangulating
a set of n points in O(n2) time using O(1) variables.
More recently, Korman et al. [12] introduced two differ-
ent time-space trade-off algorithms for the same prob-
lem: the first one computes an arbitrary triangulation
in O(n2/s + n log n log s) time using O(s) variables.
The second is a randomized algorithm that computes
the Delaunay triangulation of the given point set in
expected O((n2/s) log s + n log s log∗ s) time within
the same space bounds.

The first algorithm for triangulating simple poly-
gons was due to Asano et al. [2], and runs in O(n2)
time using O(1) variables. Faster algorithms for some
particular cases (such as monotone polygons [5, 3])
are also known. To the best of our knowledge, no
general time-space trade-off algorithm for simple poly-
gons was previously known. In this paper we introduce
a randomized algorithm with expected running time
O(n2/s) that uses O(s) variables to triangulate a sim-
ple n-gon, for any s ∈ Ω(log n) ∩O(n). Our approach
uses a recent result by Har-Peled [10], which computes
the shortest path between two vertices of a simple
polygon in expected O(n2/s) time. Due to lack of
space, proofs in this paper are omitted or sketched.
Details can be found in the extended version [1].

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



32nd European Workshop on Computational Geometry, 2016

2 Preliminaries

We study the problem of computing a triangulation
of a simple polygon P in the s-workspace model. A
triangulation of P is a maximal crossing-free straight-
line graph whose vertices are the vertices of P and
whose edges lie inside P . Since our workspace is not
large enough to store the triangulation explicitly, the
goal is to report a triangulation of P in a write-only
data structure. After a value is reported, it cannot be
accessed or modified.

In preceding similar research [2, 3], the triangulation
is reported as a list of edges in no particular order
(with no information on neighboring edges or faces).
Moreover, it is not clear how to modify these algo-
rithms to obtain such information. Our approach has
the advantage that, in addition to the list of edges,
we can report adjacency information as well. More
details can be found in [1].

Given two points p, q ∈ P , the geodesic between
them is defined as the shortest path that connects p
and q and that stays within P (viewing P as a closed
set). The length of that path is called the geodesic
distance. It is well known that, for any two points of P ,
their geodesic π always exists and is unique (hence, the
geodesic is also often simply referred as the shortest
path between p and q). Moreover, such a path is a
polygonal chain whose vertices (other than p and q)
are reflex vertices of P . Thus, we often identify π with
the ordered sequence of reflex vertices traversed by
the path from p to q. When that sequence is empty
(i.e., the shortest path consists of the straight segment
pq) we say that p sees q (and vice versa).

3 Algorithm

Let π be the geodesic connecting v1 and vbn/2c. From a
high-level perspective, the algorithm uses the approach
of Har-Peled [10] to compute π, and reports the edges
of the shortest path one by one, in order. Our aim is to
use this path to subdivide P into smaller subproblems
that can be solved recursively.

We start by introducing some definitions that will
help in recording which portion of the polygon has
already been triangulated. Vertices v1 and vbn/2c split
the boundary of P into two chains. We say that a
vertex (other than v1 and vbn/2c) is a top vertex if it is
in the chain that is traversed when walking along the
boundary of P from v1 to vbn/2c in clockwise fashion
or a bottom vertex if it lies in the other chain. Note
that all vertices, other than v1 and vbn/2c are either
top or bottom vertices. We say that a diagonal c is
an alternating diagonal if one of its endpoints is a top
vertex and the other a bottom vertex (or one of its
vertices is either v1 or vbn/2c). Otherwise we say that
the diagonal is a non-alternating diagonal.

We will use these diagonals to partition P into two

parts. Since any two vertices consecutive along the
boundary of P can see each other, the partition in-
duced by the “diagonal” connecting them is trivial
(i.e., one subpolygon is P and the other is a segment).

Observation 1 Let c be a diagonal of P such that
neither endpoint is v1 or vbn/2c. Vertices v1 and vbn/2c
belong to different components of P \ c if and only if c
is an alternating diagonal.

Corollary 1 Let c be a non-alternating diagonal of
P . The component of P \ c that contains neither v1
nor vbn/2c has at most dn/2e vertices.

While triangulating the polygon, we maintain an
alternating diagonal ac. Intuitively, the connected
component of P \ ac that does not contain vbn/2c has
already been triangulated. Since it will prove useful
that ac is not necessarily part of π, we also maintain
the property that at least one of the endpoints of ac
will be a vertex of π that has already been computed
in the execution of the shortest-path algorithm. Let
vc denote the endpoint of ac that is on π and that is
closest to vbn/2c.

With these definitions in place, we can give an intu-
itive description of our algorithm: we start by setting
ac as the degenerate diagonal from v1 to v1. We then
use the shortest-path computation approach of Har-
Peled. Our aim is to walk along π until we find a new
alternating diagonal anew. At this moment we pause
the execution of the shortest-path algorithm, trian-
gulate the subpolygons of P that have been created
(and contain neither v1 nor vbn/2c) recursively, update
ac to the newly found alternating diagonal, and then
resume the execution of the shortest-path algorithm.

Although our approach is intuitively simple, there
are several technical difficulties that must be carefully
considered. Ideally, the number of diagonals we walked
along π is small and can be stored explicitly. But if we
do not find an alternating diagonal in just a few steps
(indeed, it could even be that there is no alternating
diagonal in π), we need to use other diagonals. We
also need to make sure that the complexity of each
recursive subproblem is reduced by a constant fraction,
that we never exceed space bounds, and that no part
of the triangulation is reported more than once.

Recall that, at any instant of time, vc denotes the
endpoint of ac that is in π, and that the subpolygon
defined by ac containing v1 has already been trian-
gulated. Let w0, . . . , wk be the portion of π up to
the next alternating diagonal. That is, path π is of
the form π = (v1, . . . , vc = w0, w1, . . . , wk, . . . , vbn/2c)
where w0w1, . . . , wk−2wk−1 are non-alternating diag-
onals, and wk−1wk is an alternating diagonal (or
wk = vbn/2c if no pair of vertices consecutive on π
between vc and vbn/2c forms an alternating diagonal).

Consider the partition of P that these diagonals
create, see Figure 1. Let P1 be the subpolygon induced



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

v1

vbn/2c

ac

P1

Pbn/2c

Q2

R

Q0

w1 w2

Q1

vc = w0
w3

w4

Figure 1: Partitioning P into subpolygons P1, Pbn/2c,
R, Q1, . . ., Qk−2. The two alternating diagonals are
marked by thick red lines.

by ac that does not contain vbn/2c. Similarly, let Pbn/2c
be the subpolygon that is induced by the alternating
diagonal wk−1wk and does not contain v1. For any
i < k − 1 we define Qi as the subpolygon induced
by the non-alternating diagonal wiwi+1 that contains
neither v1 nor vbn/2c. Finally, let R be the remaining
component of P . Note that some of these subpolygons
may be degenerate and consist only of a line segment
(for example, when wiwi+1 is an edge of P ).

Lemma 2 Each of the subpolygons R, Q1, Q2, . . .,
Qk−2 has at most dn/2e + k vertices. Moreover, if
wk = vbn/2c, then the subpolygon Pbn/2c has at most
dn/2e vertices.

This result allows us to treat the easy case of our
algorithm. When k is small (say, a constant number of
vertices), we can pause the shortest-path computation
algorithm, explicitly store all vertices wi, recursively
triangulate R as well as the subpolygons Qi (for all
i ≤ k− 2), update ac to the edge wk−1wk, and resume
the shortest-path algorithm.

Handling the case where k is large is more involved.
Note that we do not know the value of k until we
find the next alternating diagonal, but we need not
compute it directly. We will be given a parameter τ
related to the workspace allowed for our algorithms,
and when k > τ , we say that the path is long. Ini-
tially we set τ = s but the value of this parameter
will change as we descend the recursion tree. We say
that the distance between two alternating diagonals
is long whenever we have computed τ vertices of π
besides vc and no pair of consecutive vertices forms
an alternating diagonal. That is, path π is of the
form π = (v1, . . . , vc = w0, w1, . . . , wτ , . . . vbn/2c) and
w0w1, . . . , wτ−1wτ are all non-alternating diagonals.
In particular, the vertices w0, . . . , wτ must form a con-
vex chain (see Figure 1). Rather than continue walking
along π, we look for a vertex u of P that together with
wτ forms an alternating diagonal. Once we have found
this diagonal, we will partition P into τ − 2 subpoly-
gons using the diagonals ac, w0w1, w1w2, . . . , wτ−1wτ ,
and uwτ similarly to the easy case: P1 is the part
induced by ac which does not contain vbn/2c, Pbn/2c

is the part induced by uwτ which does not contain
v1, Qi is the part induced by the edge wiwi+1 on its
boundary, which contains neither v1 nor vbn/2c, and
R is the remaining component.

Lemma 3 We can find a vertex u that together with
wτ forms an alternating diagonal in O(n) time using
O(1) space. Moreover, each of the subpolygons R, Q1,
Q2, . . ., Qτ−2 has at most dn/2e+ τ vertices.

Proof sketch. We use ray shooting to find an edge e
outside P1 which is partially visible to wτ . Let pN be
one of the endpoints of e. Note that pN need not be
visible to wτ . However, the triangle formed by wτ , pN ,
and the visible point of e contains one or more reflex
vertices. Among those vertices, we know that the
vertex r that maximizes the angle ∠pNwτr must be
visible (see Lemma 1 of [6]). As described in Lemma 1
of [6], in order to find such a reflex vertex we need to
scan the input polygon at most three times, each time
storing a constant amount of information. �

At high level, our algorithm walks from v1 to vbn/2c.
We stop after walking τ steps or when we find an
alternating diagonal (whichever comes first). This
generates several subproblems of smaller complexity
that are solved recursively. Once the recursion is done
we update ac (to keep track of the portion of P that
has been triangulated), and continue walking along
π. The walking process ends when the walk reaches
vbn/2c. In this case, in addition to triangulating R and
the Qi subpolygons, we must also triangulate Pbn/2c.

The algorithm on the deeper levels of recursion is
almost identical. There are only three minor changes
that need to be introduced. First, we compare the
size of the polygon to τ rather than s. Recall that τ
denotes the amount of space available to the current
instance of the algorithm. Thus, if τ is comparable
to n (say, 10τ ≥ n), then the whole polygon fits into
memory and can be triangulated in linear time [7]. If
τ is significantly smaller, then we continue with the
recursive algorithm as usual.

For ease in handling subproblems, at each step we
also indicate the vertex that fulfills the role of v1 (i.e.,
one of the vertices from which the shortest path must
be computed). Recall that we have random access to
the vertices of the input. Thus, once we know which
vertex takes the role of v1, we can find the vertex that
will satisfy the role of vbn/2c in constant time as well.

In order to avoid exceeding the space bounds, at
each level of the recursion we will decrease the value
of τ by a factor of κ < 1.

Theorem 4 Let P be a simple polygon of n ver-
tices. We can compute a triangulation of P in
O(n2/s) expected time using O(s) variables, for any
s ∈ Ω(log n) ∩O(n).



32nd European Workshop on Computational Geometry, 2016

4 Other Applications

The above algorithm introduces a general approach
for partitioning P into subpolygons, each of which
has at most O(s) vertices. Since our final objective
is computing a triangulation, at the bottom level of
recursion we use Chazelle’s algorithm [7]. However,
the same approach can be used for other structures: it
suffices to replace the base case of the recursion with
an appropriate algorithm. In this section, we mention
two examples: computing the shortest-path map and
splitting the polygon into pieces of size Θ(n).

Given a simple polygon P and a point p ∈ P (which
need not be a vertex of P ), the shortest-path tree of p
(denoted by SPT(p)) is the tree formed as the union of
all shortest paths from p to vertices of P . ElGindy [8]
and later Guibas et al. [9] showed how to compute the
shortest-path tree in linear time.

The shortest-path map of p (denoted by SPM(p)) is
the subdivision of P into maximal cells so that points
in the same cell have topologically equivalent paths to
p. It is well known that SPM(p) is a finer subdivision
than the one induced by SPT(p). Guibas et al. [9,
Section 2] showed how to further refine the shortest-
path tree so as to obtain the shortest-path map. We
refer the interested reader to Lee and Preparata [13] or
Guibas et al. [9] for more information on shortest-path
trees, maps, and their applications.

Theorem 5 Let P be a simple polygon of n vertices
and let p be any point of P (vertex, boundary or
interior). We can compute the shortest-path map or
shortest-path tree of p in O(n2/s) expected time using
O(s) variables, for any s ∈ Ω(log n) ∩O(n).

Theorem 6 Let P be a simple polygon of n vertices.
For any s ≤ n, we can partition P with Θ(n/s) diago-
nals, so that each subpolygon consists of Θ(s) vertices,
in O(n2/s) expected time using O(s) variables, for any
s ∈ Ω(log n) ∩O(n).

We note that both Asano et al. [2] and Har-Peled [10]
already gave methods of partitioning P into subpoly-
gons of roughly the same size. The first one is deter-
ministic, runs in O(n2) and uses O(1) variables. The
one of Har-Peled is a proper trade-off and also runs
in O(n2/s) expected time using O(s) variables. This
method introduces additional Steiner points. Our al-
gorithm removes the need for these additional points
(since it partitions only by diagonals between visible
vertices), while preserving the same running time.

5 Acknowledgments

The authors would like to thank Jean-François Baffier,
Man-Kwun Chiu, and Takeshi Tokuyama for valuable
discussion in the early stages of the paper.

References

[1] B. Aronov, M. Korman, S. Pratt, A. van Renssen,
and M. Roeloffzen. Time-space trade-offs for trian-
gulating a simple polygon. CoRR, abs/1509.07669,
2015.

[2] T. Asano, K. Buchin, M. Buchin, M. Kor-
man, W. Mulzer, G. Rote, and A. Schulz.
Memory-constrained algorithms for simple poly-
gons. CGTA, 46(8):959–969, 2013.

[3] T. Asano and D. Kirkpatrick. Time-space trade-
offs for all-nearest-larger-neighbors problems. In
WADS, pages 61–72, 2013.

[4] T. Asano, W. Mulzer, G. Rote, and Y. Wang.
Constant-work-space algorithms for geometric
problems. JoCG, 2(1):46–68, 2011.

[5] L. Barba, M. Korman, S. Langerman,
K. Sadakane, and R. I. Silveira. Space–
time trade-offs for stack-based algorithms.
Algorithmica, 72(4):1097–1129, 2015.

[6] L. Barba, M. Korman, S. Langerman, and R. I.
Silveira. Computing the visibility polygon using
few variables. CGTA, 47(9):918–926, 2013.

[7] B. Chazelle. Triangulating a simple polygon in
linear time. DCG, 6:485–524, 1991.

[8] H. A. ElGindy. Hierarchical Decomposition of
Polygons with Applications. PhD thesis, McGill
University, Montreal, Que., Canada, 1985.

[9] L. Guibas, J. Hershberger, D. Leven, M. Sharir,
and R. E. Tarjan. Linear-time algorithms for
visibility and shortest path problems inside tri-
angulated simple polygons. Algorithmica, 2(1–
4):209–233, 1987.

[10] S. Har-Peled. Shortest path in a polygon using
sublinear space. In SoCG, pages 111–125, 2015.

[11] M. Korman. Memory-constrained algorithms. In
Ming-Yang Kao, editor, Encyclopedia of Algo-
rithms, pages 1–7. Springer Berlin Heidelberg,
2015.

[12] M. Korman, W. Mulzer, M. Roeloffzen,
A. v. Renssen, P. Seiferth, and Y. Stein. Time-
space trade-offs for triangulations and voronoi
diagrams. In WADS, pages 482–494, 2015.

[13] D. T. Lee and F. P Preparata. Euclidean short-
est paths in the presence of rectilinear barriers.
Networks, 14(3):393–410, 1984.

[14] J. E. Savage. Models of Computation: Exploring
the Power of Computing. Addison-Wesley, 1998.


