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Fine-Grained Analysis of Problems on Curves
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Abstract

We provide conditional lower bounds on two problems
on polygonal curves. First, we generalize a recent
result on the (discrete) Fréchet distance to k curves.
Specifically, we show that, assuming the Strong Expo-
nential Time Hypothesis, the Fréchet distance between
k polygonal curves in the plane with n edges cannot be
computed in O(nk−ε) time, for any ε > 0. Our second
construction shows that under the same assumption
a polygonal curve with n edges in dimension Ω(log n)
cannot be simplified optimally in O(n2−ε) time.

1 Introduction

The fine-grained complexity of the (discrete) Fréchet
distance between two curves has recently attracted
a lot of attention. After a long period without ma-
jor progress, Agarwal et al. devised a subquadratic

O
(

mn log logn
logn

)
-time algorithm for the discrete Fréchet

distance on the word RAM [2]. Buchin et al. [10] gave
a randomized algorithm for the continuous Fréchet
distance with a running time slightly better than the
classic bound of O(n2 log n) [4]. Answering a ques-
tion by Buchin et al. [10], Bringmann [6] showed that
the (discrete) Fréchet distance cannot be computed
in O(n2−ε) time, for any ε > 0, assuming the Strong
Exponential Time Hypothesis (SETH). This result was
later refined and extended [8]. SETH states that for
every ε > 0, there is a k ∈ N such that the satisfiability
problem on k-CNF formulas with n variables and m
clauses cannot be solved in time mO(1)2(1−ε)n.

Bringmann’s work [6] triggered a lot of activity,
leading to new conditional lower bounds for famous
problems such as edit distance, dynamic-time warping,
or longest common subsequence (LCS) [1,7]. For LCS,
a more general bound states the non-existence of a
O(nk−ε)-time algorithm for k strings over an alphabet
of size O(k). Our first result generalizes the lower
bound on the discrete Fréchet distance to k curves.

Theorem 1 For any ε > 0, the discrete Fréchet dis-
tance of k planar point sequences of length n cannot
be decided in O(nk−ε) time, unless SETH fails.
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The Fréchet distance between k curves was considered
previously by Rote and Dumitrescu [12], who provide a
near-quadratic time 2-approximation for the problem.
Measuring the distance and analyzing the similarity
between a set of parameterized curves in this way is
also relevant for movement data analysis. For instance,
it can be used in the analysis of collective movement,
e.g., within a flock of birds, or to detect clusters of
similar movement sequences [9].

Our second result is on simplifying a d-dimensional
polygonal curve 〈a0, . . . , an〉. We consider the com-
mon variant [13] where the vertices of the simplified
curve should be an ordered subsequence of the orig-
inal vertices, and if ai and aj are consecutive in the
simplification, then the distance between the subcurve
〈ai, ai+1, . . . , aj〉 and the line segment aiaj should be
at most a given ε > 0. We focus on the Hausdorff
distance, although the reduction also applies to the
Fréchet distance. There are two common variants of
the simplification problem: min-#, in which ε is given
and the number of vertices is to be minimized, and
min-ε in which an upper bound on the number of
vertices is given and ε is to be minimized.

Algorithms for the min-ε and the min-# problems
with running time O(n2 log n) and O(n2), respectively,
are known for polygonal curves in the plane [11]. For
the L1-metric, Agarwal and Varadarajan [3] presented
an O(n4/3+ε)-time algorithm. For curves in Rd, Bare-
quet et al. [5] developed efficient algorithms. Their
algorithms run in near-quadratic time for d = 3 and
in subcubic time for d = 4. If distance is measured
according to the L1- or the L∞-metric, they achieve
a running time of O(n2) and O(n2 log n) for min-ε
and min-#, respectively, in any fixed dimension. In
particular, for L∞ the dependency on the dimension is
only a small-degree polynomial. It is a long-standing
open problem whether the (near-)quadratic running
time can be improved for the Euclidean distance [3].1

We show that, at least in sufficiently high (non-
constant) dimension, this is not possible unless SETH
fails. For L∞, our construction shows that the algo-
rithm by Barequet et al. is essentially optimal in high
dimensions, assuming SETH.

Theorem 2 There is no algorithm that optimally,
min-# or min-ε, simplifies a polygonal curve with n
edges in Rd with d = Ω(log n) using ε-tolerance regions

1See also http://cs.smith.edu/~orourke/TOPP/P24.html.
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in the L1-, L2- or L∞-metric that runs inO(n2−ε) time,
for any ε > 0, unless SETH fails.

To prove the lower bounds, we use a reduction from
the k-Orthogonal Vectors problem (as stated in [1]),
using the notation [n] := {1, . . . , n}.

Definition 1 (k-Orthogonal-Vectors) Suppose
we are given k lists {α1

i }i∈[n], {α2
i }i∈[n], . . .,

{αk
i }i∈[n] of vectors in {0, 1}d. We need to decide

whether there are k vectors α1
i1

, α2
i2

, . . ., αk
ik

with∑d
h=1

∏
t∈[k] α

t
it

[h] = 0. Any such collection of vectors
is called orthogonal.

The following lemma is well known [1,14].

Lemma 3 If there is an ε > 0 such that k-Orthogonal
Vectors on n vectors in {0, 1}d with d = Ω(log n) can
be solved in O(nk−ε) time, then SETH is false.

2 Fréchet distance between k curves

We show the lower bound on the discrete Fréchet
distance between k curves by a reduction from the
k-Orthogonal Vectors problem. We begin with some
notation. Let A1, . . . , Ak be k sequences of points in
the plane, Ai = 〈ai1, . . . , aini

〉. By aij [h], for h = 1, 2,

we denote the h-th coordinate of aij . We set S =
[n1]× [n2]× · · · × [nk].

We define a coupling of length m on S as a
sequence C = 〈C1, . . . , Cm〉 such that we have
Ci ∈ S, C1 = (0, 0, . . . , 0), Cm = (n1, n2, . . . , nk),
and Ci+1[h] = Ci[h] or Ci+1[h] = Ci[h] + 1, for all
i = 0, . . . ,m − 1 and h = 1, . . . , k. A coupling C
defines an alignment of the curves A1, . . . , Ak, and
we define the coupled distance as dC(A1, . . . , Ak) :=

max
{
d(ahCi[h], a

h′

Ci[h′]) | 0 ≤ i ≤ m, 1 ≤ h, h
′ ≤ k

}
,

where d denotes the Euclidean distance. The discrete
Fréchet distance dF (A1, . . . , Ak) between the k curves
is the minimal coupled distance over all possible
couplings.

Next, we describe our reduction. Suppose we
have k lists {βi}i∈[n], {αt

i}i∈[n], t ∈ [k − 1], of

vectors αt
i, βi ∈ {0, 1}d. We construct k curves

B,A1, A2, . . . , Ak−1. Their discrete Fréchet dis-
tance will be 1 if the given vector lists contain
a collection of k orthogonal vectors, and strictly
larger than 1, otherwise. The coordinates of the
vectors are encoded by coordinate gadgets (CG), see
Figure 1. Set δ := 1/100, and for i = 1, . . . , k − 1,
let CG i(0) := 〈(−0.5 − δ, 0), (0.5, 0), (−0.5 −
δ, 0), . . . , (0.5, 0), (−0.5 − δ, 0)〉 be a curve with
2k − 1 vertices. We define CG i(1) to have the same
vertices as CG i(0), except that the 2i-th vertex is
replaced by (0.5 + δ, 0). Further we define CGB(0) :=
〈(−0.5, 0), (0.5, 0), (−0.5, 0), . . . , (0.5, 0), (−0.5, 0)〉
with 2k − 1 vertices and CGB(1) in the same way

but with only 2k − 3 vertices. We call the vertices at
(0.5, 0) short spikes and at (0.5 + δ, 0) long spikes.
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Figure 1: Coordinate gadgets (distorted vertically for
the purpose of illustration).

Suppose that there were a coupling of CG1(1),
CG2(1), . . . ,CGk−1(1), CGB(1) achieving a distance
of at most 1. Then, k − 1 spikes of CG1(1),. . .,
CGk−1(1) need to be coupled, but there is one long
spike in each coupled spike. We need to couple ev-
ery long spike with a different spike of CGB(1). This
is not possible, since CGB(1) has only k − 2 spikes.
Thus, dF (CG1(1), . . . ,CGB(1)) > 1. If we replace any
CG∗(1) with a respective curve CG∗(0), the distance
becomes 1.

Next, we encode the vectors and the vector lists.
To “synchronize” coordinates, we will use the point
c := (0, 0.8661). The start of vectors will be demar-
cated by vA := (−0.499,−1) and vB := (0,−0.8661).
Additionally, we will use the points tA = (0.48,−0.01)
and tB = (0.57, 1.005) to mark a successful synchro-
nized traversal, and s = (−0.499, 0) as a point that is
close to all except tB , see Figure 2.
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Figure 2: The points used as vertices of the curves.

Two points are close if their distance is at most 1:
s is close to all points except tB , and tA is close to all
except vA. The point c is close only to s and tA (and
itself); tB is close only to tA and vB ; vA is close only
to s and vB ; vB only to s, tA and tB .

Let Aj
i := s◦vA ◦©d

h=1(CGj(α
j
i [h])◦ c) ◦ tA, where

we use ◦ to denote the operation of adding a vertex
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to a curve or of concatenating curves. We set Aj :=(
©n

i=1A
j
i

)
◦ s. Furthermore, we define Bi := vB ◦

©d
h=1(CGj(βi[h])◦c) and B := s◦vA◦©n

i=1Bi ◦tB ◦s.
First, we argue that k vectors α1

i1
, α2

i2
, . . . , αk−1

ik−1
, βik

are orthogonal if and only if the corresponding con-
catenated coordinate gadgets have Fréchet distance
at most 1. If the vectors are orthogonal, then in each
coordinate, at least one vector has a 0-entry, and a
coupling of distance at most 1 is possible. On the
other hand, if the vectors are not orthogonal, there is
one coordinate in which all vectors have 1-entries. The
c vertices force us to traverse all coordinates simulte-
nously, so that we will have to couple k one-coordinate
gadgets, giving a Fréchet distance larger than 1.

Now, let us consider the vector lists and the com-
plete curves. If the vector lists contain a k-tuple
α1
i1
, α2

i2
, . . . , αk−1

ik−1
, βik of orthogonal vectors, then the

curves A1, . . . , Ak−1, B have Fréchet distance at most
1. This can be seen by the following coupling: first,
A1 walks to the first point s of A1

i1
, while all other

curves wait at s. Then, A2 walks to the first point s
of A2

i2
, while all other curves wait at s, etc. Finally,

B walks to the first point vB of Bik , while all other
curves wait at s. Since s is close to all points except
for tB, the distance so far is 1. Then, the Aj curves
simultaneously jump to vA while B waits at vB, and
then the coordinate gadgets are traversed simultane-
ously. Next, the Aj curves wait at tA while B walks
to the last point s. The Aj then simultaneously go to
the next s, and finish the walk to the final vertex one
after another while the other curves wait at s.

Next, suppose that the curves have Fréchet distance
larger than 1. We argue that then there is a k-tuple
of orthogonal vectors. Indeed, suppose that no such k-
tuple exists, and consider the first time that B reaches
tB . Since tB is close only to tA and vB , at this point,
all Aj must be at tA. It follows that before that, all
Aj ’s must have been simultaneously at vA, because
on the Aj ’s, vA comes before tA, and vA is close only
to s and vB. For the same reason, at this point, B
also must be at vB . Then, the coordinate gadgets of a
k-tuple of vectors are traversed simultaneously, leading
to Fréchet distance larger than 1, as all k-tuples are
non-orthogonal. Theorem 1 follows.

Our construction also rules out a faster polynomial-
time approximation scheme unless SETH fails. The
coordinates were computed by hand and could be opti-
mized to prove a specific approximation lower bound.

3 Curve Simplification

In this section, we reduce the 2-Orthogonal Vectors
problem to the curve simplification problem. Given
two lists of 0/1-vectors {αi}i∈[n] and {βi}i∈[n] in di-
mension d, we interpret each vector as a point in
dimensions d+ 1, as follows: we define α̂i[h] := αi[h]

(0, . . . , 0,−δ) (0, . . . , 0, δ)

{0, 1}d × {−δ} {0, 1}d × {δ}

start, end: 0

α̂i ∈ β̂i ∈

checkpoints

Figure 3: Construction for simplification lower bound.

for 1 ≤ h ≤ d and α̂i[d+ 1] := −δ with δ = 2d2. We

define β̂i[h] analogously, except that β̂i[d+ 1] := δ.

The idea of the reduction is illustrated in Figure 3.
We construct a curve that moves from a starting point
through all α̂i, then through d “checkpoints”, through
all β̂i, and finally to an endpoint. The threshold ε
for the simplification is chosen such that all points α̂i

have pairwise distance smaller than ε, and similarly
for the points β̂i. Thus, the intended simplification
uses the starting point, one point α̂i, one point β̂j ,
and the endpoint. The checkpoints will have distance
at most ε to the edge from α̂i to β̂j exactly if the two
corresponding vectors are orthogonal.

For 1 ≤ i ≤ d, let qi ∈ Rd+1 be defined as qi[i] = −δ′,
qi[d+ 1] = 0, and qi[·] = 1/4, otherwise, where δ′ will
be chosen later depending on the metric. We define a
curve A = 〈a0, . . . , am〉 with m = 2n+2+d vertices by
a0 = am = (0, . . . , 0), ai = α̂i, for 1 ≤ i ≤ n, an+i =

qi, for 1 ≤ i ≤ d, and an+d+i = β̂i, for 1 ≤ i ≤ n.

We first consider a simplification under the L∞-
metric. We set ε = 1 and δ′ = 1/2. By the choice of
ε and δ, the simplification needs to include at least
a0, one point α̂i, one point β̂j , and am. Assume there
are orthogonal vectors αi and βj . Let `(t) be the line

segment between α̂i and β̂j parameterized by t in the
(d + 1)-th coordinate. For the midpoint `(0) of the

segment we have `(0)[h] = (α̂i + β̂j)/2 ∈ {0, 1/2}, for
1 ≤ h ≤ d (and `(0)[d + 1] = 0). Hence all qi have
distance less than 1 to `(0) and are therefore within
distance ε to the segment. In contrast, let us assume
αi and βj are nonorthogonal. In this case there is a

coordinate 1 ≤ h ≤ d such that α̂i[h] = β̂j [h] = 1.
It follows that `(t)[h] = 1 for all t ∈ [−δ, δ], and
therefore d∞(`(t), qh) ≥ 1 − qh[h] > 1 = ε. Thus, if
we choose this segment, qh has distance larger than
ε to the segment. Consequently, if there is no pair
of orthogonal vectors, a simplification for distance ε
requires at least 5 vertices.

For the L1-metric we set ε = d and δ′ = 3/4d −
1/4. By the same argument as for L∞, we get that
if there are orthogonal vectors, then they induce a
simplification with 4 vertices, since d1(qi, `(0)) ≤ (d−
1)/4 + δ′ + 1/2 = d = ε. Now again consider the case
that all αi and βj are nonorthogonal, so there is a

coordinate 1 ≤ h0 ≤ d, such that α̂i[h0] = β̂j [h0] =
1. We show that d1(`(t), qh) > ε for all t ∈ [−δ, δ].
We can restrict our attention to t ∈ [−ε, ε] due to
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the (d+ 1)-th coordinate. Now consider a coordinate
h 6= h0, d + 1. If αi[h] = βj [h] = 0, then `(t)[h] = 0.
Otherwise `(0)[h] ≥ 1/2 and `(t)[h] ≥ `(0)[h](1− ε/δ)
for t ∈ [−ε, ε]. Consequently, for any t we get that
d1(`(t), qh) ≥ (d − 1)(1/2(1 − ε/δ) − 1/4) + 1 − δ′ =
[(d− 1)/4 + δ′ + 1/2] + 1/2− (d− 1)ε/δ = ε+ 1/2−
(d− 1)ε/δ > ε. Thus, there is a simplification using 4
vertices exactly if there is an orthogonal pair.

For the L2-metric we set ε =
√
d. Further we fix

δ′ = −1/2 +
√

15d+ 1/4, which implies that δ′ > 0
and that

√
(d− 1)/4 + (1/2 + δ′)2 = ε. By the choice

of δ′ orthogonal vectors, we induce points with all
qi having distance at most ε to the segment. Now
again consider a pair of nonorthogonal vectors with
αi[h0] = βj [h0] = 1. It is sufficient then to prove
that d2(`(t), qh)2 > ε2 = d for t ∈ [−ε, ε]. Using the
same derivation as for L1, we obtain d2(`(t), qh)2 ≥
(1 + δ′)2 + (d− 1)(1/4− ε/δ/2)2. The first summand
is larger than 15/16d+ 1/16 + 1/4 while the second is
larger than (d−1)/16−(d−1)ε/δ/4 > (d−1)/16−1/8.
Hence, qh has a distance larger than ε to the segment.

As a result of this, we can reduce the 2-Orthogonal
Vectors problem in dimension d to curve simplification,
min-# or min-ε, in dimension d+ 1 for the L1, L2 and
L∞ metrics. Theorem 2 follows.

4 Conclusion and Open Problems

We have extended the recent conditional fine-grained
hardness results for the Fréchet distance to the case
of k curves and to the curve simplification setting,
showing that any significant improvement on known
methods would result in a major breakthrough in
satisfiability algorithms.

We find the curve simplification result particularly
intriguing, since in seems to offer a qualitative differ-
ence from the previous work: in the curve simplifica-
tion setting, we have only one input object that needs
to be compared to itself. Are there problems of similar
flavor where analogous conditional hardness results
can be obtained?
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