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A Refined Definition for Groups of Moving Entities and its Computation∗
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Abstract

We propose a refined definition of a group of moving
entities which corresponds better to human intuition.
We also present algorithms to compute all maximal
groups from a set of moving entities.

1 Introduction

Nowadays, inexpensive modern devices with advanced
tracking technologies make it easy to track movements
of an entity. This has led to the availability of move-
ment data for various types of moving entities (hu-
man, animals, vehicles, etc.). Since a tracking device
typically returns a single location at each time stamp,
each moving entity will be represented as a moving
point. The data may consist of just one trajectory
tracked over a period, or a whole collection of trajec-
tories that are all tracked over a period. It is common
to denote the number of trajectories (or moving en-
tities) by n and the number of time stamps used for
each by τ . Hence, the input size is Θ(τn).

To analyze moving object data, a number of meth-
ods have been developed in recent times. These
methods may concern similarity analysis, clustering,
outlier detection, segmentation, and various patterns
that may emerge from the movement of the entities
(for surveys see [3, 14]). These methods are often
based on geometric algorithms, because the data is
essentially spatial.

One particular type of pattern that has been well-
studied is flocking [1, 4, 5]. Intuitively, a flock is a sub-
set of the entities moving together (or simply being
together) over a period of time. Other names for this
and closely related concepts with slightly different def-
initions are herds [6], convoys [8], moving clusters [9],
mobile groups [7], swarms [11], and groups [2]. The
last of these defines a group in a simple and formal
way. In [2] a model is introduced called the trajectory
grouping structure which not only defines groups, but
also the splitting of a group into subgroups and its op-
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posite, merging. The algorithmic problem of report-
ing all maximal groups that occur in the trajectories is
solved in O(τn3 +N) time, where N = O(τn4) is the
output size (the summed size of all groups reported).
The algorithm also considers times in between the τ
time stamps where the locations are recorded as rel-
evant. In between these time stamps, locations are
inferred by linear interpolation over time.

In this paper we continue the study of such groups,
but we propose a refined definition to the one in [2].
We motivate why it captures our intuition better and
present algorithms to compute all maximal groups.

2 Problem Description

The definition of a group by Buchin et al. [2] relies on
three parameters: one for distance between entities,
one for the duration of a group, and one for the size
of a group. We review their definitions next.

For a set of moving entities X , two entities x and y
are directly ε-connected at time t if the Euclidean dis-
tance between x and y is at most ε at time t, for some
given ε ≥ 0. Two entities x and y are ε-connected
in X if there is a sequence x = x0, ..., xk = y, with
{x0, ..., xk} ⊆ X and for all i, xi and xi+1 are directly
ε-connected at the same time t.

In [2], a group for an entity inter-distance ε, a min-
imum required duration δ, and a minimum required
size m, is defined as a subset G ⊆ X and correspond-
ing time interval I for which three conditions hold:

(i) G contains at least m entities.
(ii) I has a duration at least δ.

(iii) Every two entities x, y ∈ G are ε-connected in
X during I.

Furthermore, a group G with time interval I is max-
imal if there is no time interval I ′ properly containing
I for which G is also a group, and there is no proper
supergroup G′ of G that is also a group during I [2].

One issue with this definition is that it does not
correspond fully to our intuition. Two entities x and
y may form a maximal group in an interval I even if
they are always far apart, as long as there are always
entities of X in between to make x and y ε-connected
in X . This can have counter-intuitive effects espe-
cially in dense crowds. To avoid such issues, we refine
the definition of a group. In particular, we replace
condition (iii) above by:
(iii’ ) Every two entities x, y ∈ G are ε-connected in

G during I.
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Figure 1: In the definition by [2], x and y are ε-
connected during [t0, t2]
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Figure 2: Entities in G = {a, h} are ε-connected using
entities not in G.

We define maximal groups in the same way as before.

We give two examples that show the difference in
these definitions. First, consider a number of station-
ary entities S and two entities x and y, see Figure 1.

Entity x starts (t0) to the North of S and moves
around its perimeter to the East. Entity y starts (t0)
to the South and also moves around the perimeter
to the East. After encountering (t1) each other at
the East side, both continue together eastward, away
from the stationary entities in S (ending at t2).

By the definition in [2], x and y form a maximal
group in the interval [t0, t2]. In our refined definition,
they form a maximal group during [t1, t2], starting
when x and y actually encounter each other.

Second, the previous definition can even see groups
of entities that were never close, see Figure 2. Here,
{a, h} is a maximal group in the interval I = [t1, t3]
using the definition in [2]. At each time, a and h are
ε-connected, but through different subsets of entities.
Although a and h move in the same direction with
the same speed, intuitively they do not form a group
because they are too far apart and separated by other
entities that move in the opposite direction. With
the new, refined definition, we do not consider {a, h}
a group in the interval I.

Results and Organization. In this paper, we show
that for a set X of n moving entities in R1 with τ time
stamps each, the number of maximal groups by the
refined definition is O(τn3), which is tight in the worst
case. We present algorithms to compute all maximal
groups, beginning with a basic algorithm that runs
in O(τ3n6) time. Subsequent improvements lead to
a running time of O(τ2n4). For moving entities in
Rd (d > 1), we show that all maximal groups can
be computed in O(τ2n5 log n) time. From now on, we
will use the term “group” to denote a group of entities
that comply with our refined definition.

3 Preliminaries

Let X be a set of n entities moving in R1, given by
locations at τ time stamps. A trajectory of an entity
in X can be expressed by a piecewise-linear function
which maps time to a point in R1. If R1 is associated
with the vertical axis and time with the horizontal
axis of a 2-dimensional plane, the trajectories of enti-
ties in X are polylines with τ vertices each. We will
use the same notation to denote an entity and its tra-
jectory. We assume that all trajectories have their
vertices at the same times and that there are no two
parallel edges.

Let dij(t) be the Euclidean distance between i ∈ X
and j ∈ X at time t. When dij(t) = ε, we say that
an ε-event occurs. For any ε-event v, we denote by
tv the time when v occurs and ω(v) the function that
returns the two entities that create v. We assume that
no two or more ε-events occur at the same time.

Consider an ε-event v; let ω(v) = {i, j}. If i and j
are further than ε immediately before tv, then v is a
start ε-event; if they are further immediately after tv
it is an end ε-event. If there is no entity k ∈ X located
strictly in between i and j at tv (so dik(tv)+djk(tv) =
ε), then we say that v is a free ε-event.

Observation 1 The number of ε-events is O(τn2).

Let G be a group of entities in time interval I that
is maximal in size. All entities in G are pairwise ε-
connected in the interval I, and hence, there are no
free ε-events in G during I. In the arrangement of
trajectories from G, no face has height greater than ε.

It is also clear that G can begin only at a start ε-
event and end only at an end ε-event. Furthermore,
we observe that if a start ε-event (or end ε-event) of
G is not a free ε-event with respect to the entities in
G, then before (or after) the interval I, entities in G
are still pairwise ε-connected and we can extend the
interval of G. Therefore, G can be a maximal group
only if both the start ε-event and end ε-event are free
ε-events (but this is not a sufficient condition).

Observation 2 There can be at most one maximal
group that starts and ends at a particular pair of start
ε-event and end ε-event.

Theorem 1 For a set X of n entities, each entity
moving along a piecewise-linear trajectory of τ edges,
the maximum number of maximal group is Θ(τn3).

Proof. Any group G that starts at a start ε-event
contains at most n entities. When a free end ε-event
involving G occurs, only group G ends but a subgroup
of G with fewer entites may continue. This can hap-
pen at most n − 1 times. Therefore, the number of
maximal groups is O(τn3). Furthermore, there can be
Ω(τn3) maximal groups because the lower bound for
the definition of a group in [2] still applies [13]. �
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Figure 3: Removing trajectory p (and γ) introduces
a new free ε-event: π.

The approach to compute all maximal groups is to
work on the arrangement A of line segments that are
the trajectories. For a subset G ⊆ X and interval I,
we can remove entities from G that are separated at
a face with height larger than ε in I (corresponding
to a free ε-event). Only if there are no such faces, the
remaining entities in G can be a group. Note that
removing entities in G involves removing the corre-
sponding trajectories from the arrangement A, which
can cause new faces that are free ε-events.

4 Basic Algorithm

Next, we describe a simple algorithm to compute all
maximal groups. Let ξs and ξe be the sets of all start
ε-events and all end ε-events respectively. Fix α ∈
ξs and β ∈ ξe. By Observation 2, there is only one
maximal group G that starts at α and ends at β.
Furthermore, observe that G necessarily contains the
entities ω(α) = {a, b} and ω(β) = {c, d}, and that if
G is a maximal group on I = [tα, tβ ], then all entities
in G are on the same side at time tγ ∈ (tα, tβ) when
a free ε-event γ occurs. We then use the following
approach to find G (if it exists):

1. Initialize a set G containing all entities in X .
2. Build an arrangement A induced by the trajecto-

ries of the entities in G in the interval I.
3. A face f in A contains a free ε-event γ if (and only

if) the height of f is more than ε. If f has height
larger than ε, test if (the trajectories of) a, b, c, and
d, all lie on the same side of f . If not, there is no
maximal group G that starts at α and ends at β. If
they do pass on the same side, let S denote the set
of entities whose trajectories lie on the other side
of f . Remove these entities from S, and remove
their trajectories from A. Observe that new free ε-
events may appear because removal of a trajectory
from A merges two faces of A into a larger one. See
Figure 3. Repeat this step until there is no more
free ε-events γ with tγ ∈ (tα, tβ).

4. Check that α and β are now free. If so, G is a
maximal group on I, and hence we can report it.
If not, G is actually a group during a time interval
I ′ ⊃ I. Hence, G may be maximal in size, but not
in duration. We do not report G in this case.

Theorem 2 Given a set X of n entities in which each
entity moves in R1 along a trajectory of τ edges, all
maximal groups can be computed in O(τ3n6) time
using the Basic Algorithm.

Proof. The number of combination of a pair of start
and end ε-events is O(τ2n4). Building an arrange-
ment from trajectories of entities takes O(τn2) time.
Removing a trajectory e and checking new faces in A
takes time proportional to the zone complexity of e:
O(τn). Since there are at most n trajectories to be
removed, the whole process to remove entities for each
interval I takes O(τn2) time. Therefore, the running
time of the algorithm is O(τ3n6) time. �

5 Improved Algorithm

The previous algorithm checks every pair of possible
start and end ε-events α and β to potentially find one
maximal group. To improve the running time, we fix a
start ε-event α and consider the O(τn2) end ε-events
β in increasing order. We show that we can check for
a maximal group on [tα, tβ ] in amortized O(1) time.

We build the arrangement A for all trajectories,
starting from time tα, and sort the end ε-events β,
with tβ > tα on increasing time. We then consider
the end ε-events β in this order, while maintaining a
maximal set G that is ε-connected in G throughout
the time interval [tα, tβ ].

Let ω(α) = {a, b} be the entities defining the
start ε-event α, and let G ⊇ {a, b} be the largest
ε-connected set on [tα, tβ ]. We compute the largest
ε-connected set on [tα, tβ′ ] for the next ending event
β′ as follows. Note that this set will be a subset of G.

Let S be the set of entities that separate from a and
b at β. We remove all trajectories from the entities
in S from A. As before, this may introduce faces of
height larger than ε. For every such face f , we check
if a and b still pass f on the same side. If not, there
can be no maximal groups that contain a and b, start
at tα, and end after tβ . If a and b lie on the same
side of f , we add all entities that lie on the other side
of f to S and remove their trajectories from A. We
repeat this until all faces in A that have non-empty
intersection with the vertical strip defined by [tα, tβ′ ]
have height at most ε (or until we have found a face
that splits a and b). It follows that the set G′ = G\S
is the largest set containing a and b that is ε-connected
throughout [tα, tβ′ ]. If α and β′ are free with respect
to G′ then we report G′ as a maximal group.

Building the arrangementA takesO(τn2) time, and
sorting the ending-events takes O(τn2 log(τn)) time.
By the Zone Theorem, we can remove each trajectory
in O(τn) time. Checking the height of the new faces
can be done in the same time bound. It follows that
the total running time is O(τn2(τn2 + τn2 log(τn) +
R)) where R is the total time for removing trajectories
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from the arrangement. Clearly, R is bounded by the
complexity of the arrangement: O(τn2). So, the total
running time is O(τ2n4 log(τn)).

Further Improvement We can avoid repeated sort-
ing of end ε-events by pre-sorting them in a list, and
for each start ε-event, use this list. The list will con-
tain events that do not concern the entities involved
in the start ε-event, but this can be tested easily in
constant time. Thus, we conclude:

Theorem 3 Given a set X of n entities in which each
entity moves in R1 along a trajectory of τ edges, all
maximal groups can be computed in O(τ2n4) time.

6 Algorithms for Entities in Rd

In Rd (d > 1), it is harder to test whether an ε-event
really connects or disconnects because the two enti-
ties may be ε-connected through other entities in the
group. This observation immediately gives the con-
dition for an ε-event to be free. We model our mov-
ing entities in a graph where vertices represent en-
tities and an edge exists if two entities are directly
ε-connected. As in Parsa [12], we can maintain the
graph under edge updates, while allowing same com-
ponent queries, in O(log n) time per operation.

To compute maximal groups, we start at a start ε-
event α (ω(α) = {a, b}) and maintain the connected
component C throughout the sequence of sorted ε-
events. At each ε-event β, we remove any vertices
that are disconnected from C and start again from α
in case we remove anything. We stop if a and b are
disconnected. If α is a free ε-event when we reach β
again, we report C as a maximal group and continue.

We start at O(τn2) ε-events, process O(τn2) ε-
events for each, and may need to restart up to n − 1
times. Hence, we obtain:

Theorem 4 Given a set X of n entities move in Rd
along a trajectory of τ edges, all maximal groups can
be computed in O(τ2n5 log n) time.

7 Conclusions and Future Work

In this paper we introduced a variation on the group-
ing structure definition [2] and argued that it corre-
sponds better to our intuition. We have given an algo-
rithm for trajectories moving in R1 that computes all
maximal groups and runs in O(τ2n4) time. In Rd, our
algorithm runs in O(τ2n5 log n) time. The number of
maximal groups is Θ(τn3) in the worst case.

The main challenges include reducing the depen-
dency on τ to subquadratic, and the dependency on
n. It would also be interesting to develop an output-
sensitive algorithm that uses considerably less time
if the output is small. Finally, we may be able to

develop algorithms that take geodesic distance into
account, like was done for the previous definition of a
group [10].
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