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Characterizing the Distortion of Some Simple Euclidean Embeddings
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Abstract

We consider two related families of problems. First we
consider the embedding of finite point sets on a circle into
one or more lines, or finite point sets on a sphere onto one
or more planes. Next we consider the problem of embed-
ding N + 1 points from RK+1 into RK where all but one
of the N + 1 points are in RK . Given such point sets, in
the worst case, how much distortion must necessarily be
incurred, by the best embedding?

1 Introduction

Various authors have studied the problem of minimizing
the distortion of embedding points from one metric space
into another metric space. In this work we consider two
related families of problems. First we consider the embed-
ding of finite point sets on a circle into one or more lines,
or finite point sets on a sphere onto one or more planes.
Next we consider the problem of embedding N +1 points
from RK+1 into RK where all but one of the N + 1 points
are in RK . Given such point sets, in the worst case, how
much distortion must necessarily be incurred, by the best
embedding? In the case of the N + 1 points, how does
the maximum distortion compare to the case where an un-
bounded number of points can lie outside any particular
hyperplane of RK+1? Questions of this nature are impor-
tant in many application areas, from data compression to
machine learning.
Notation: Let Π be an embedding of one metric space,
M1 into a second metric space, M2. Let d1(x,y) denote
the distance between two points x,y ∈M1 and let d2(x,y)
denote the distance between two points x,y ∈M2.
Definition: Let P be a finite point set in a metric space
M1, and let Π : P→M2 be a mapping (embedding) of P
into M2. Then the distortion of the mapping Π, Dist(Π)
is given by

Dist(Π) =

max
(

max
x,y∈P

d2(Π(x),Π(y))
d1(x,y)

,max
x,y∈P

d1(x,y)
d2(Π(x),Π(y))

)
.

2 Background and Related Work

A fundamental reference that discusses the Lipschitz ex-
tension theorem of Kirszbraun (see next section) and the
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now classical Johnson-Lindenstrauss-Schechtman Lem-
mas is [4]. [1] and [2] study embedding metric spaces
into a line, and into the two-dimensional plane. Our work
is most closely related to [3], which discusses online met-
ric embeddings. [5] and [6] are two older works that study
the embedding of finite metric spaces into low dimensional
Euclidean spaces.

3 Embeddings Points on a Circle into a Line and
Points on a Sphere into a Plane

Definition: Call a set of N points on the unit sphere
SK dense if the radius of the largest empty cap is of size
O
(

1
N1/K

)
.

Unless otherwise stated, all metrics are assumed to be
the Euclidean metric of the ambient spaces. Badiou et
al. [2] showed that any embedding of N points on the
sphere into a plane has distortion O(

√
N) and that a dense

set of points on the unit sphere embeds into R2 with dis-
tortion Θ(

√
N). The proof of the latter uses the Borsuk-

Ulam Theorem together with Kirszbraun’s Theorem [4],
which says that a Liptschitz embedding of a subset of a
Hilbert Space into another Hilbert Space can be extended
to a Liptschitz embedding of the full space, with the same
Liptschitz constant. The same arguments can be used to
show that any embedding of N points on a circle into a
line has distortion O(N) and that a dense set of points on
the unit circle embeds into the line with distortion that is
Θ(N).

4 Embeddings Points on a Circle into Multiple
Lines and Points on a Sphere into Multiple
Planes

We first consider the problem of embedding points on a
circle into two lines.

Lemma 1 A set of N points on a circle can be embedded
into two lines selected by the problem solver with distor-
tion that is O(

√
N).

Proof. Consider an origin-centered disk of unit radius and
a set P of N points on the disk. To this set of points add
their antipodal points −P. Among the points in P∪−P
there is some pair of adjacent points p, p′ that are Ω( 1

N )
from one another. The antipodals to these points are also
adjacent to one another with the same separation. Split the
circle with a diametric cut that passes between p and p′,
and also between −p and −p′.
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Half of the points of P∪−P will be on one side of this
cut and half on the other side. Without loss of generality
suppose the cut is the line y = 0. Now consider the two
lines y = 1√

N
and y = − 1√

N
. Define an embedding Π of

the points on the circle to the two lines as follows. Embed
the points on the top half of the circle, say that in left to
right order they are p, ....,−p′, onto y = 1√

N
, also in left to

right order, so that their sequential distances from one an-
other are the same as their geodetic distances on the circle.
Then embed the points on the bottom half of the circle,
i.e. −p, ..., p′, this time in their natural right to left order-
ing, onto y =− 1√

N
, so that their sequential distances from

one another are again the same as their geodetic distances
on the circle, and moreover, such that the image of −p is
directly below the image of −p′.

For points q,q′ that are mapped to the same line,
Π introduces just a constant amount of distortion since
the geodetic distance along the circle is an O(1)-
approximation to the Euclidean distance. To see this for-
mally we need show that the ratio of the length of an arc of
the unit circle to the associated chord length is bounded by
a constant. On a unit circle the length of an arc associated
with a central angle θ is also θ, while the associated chord
length is

√
2−2cosθ = 2sin θ

2 . So we must determine the
supremum of

f (θ) =
θ

2sin θ

2

. (1)

By L’Hôpital’s Rule,

lim
θ→0

f (θ) = 1, (2)

and

f ′(θ) =
2sin θ

2 −θcos θ

2

4sin2 θ

2

(3)

and the numerator is never 0. It follows that the supremum
of f is the maximum of 1 (the effective value of f (0)) and
f (π) = π

2 , establishing that the geodetic distance along the
circle is an O(1)-approximation to the Euclidean distance.

Thus the biggest distortion is either the distortion intro-
duced at Π(p),Π(p′) (equivalently, at Π(−p),Π(−p′)),
which is potentially the most pronounced expansion, or by
the most pronounced contraction, which can be no more
substantial than if there were points at (0,1),(0,−1) with
(0,1) embedding into the line y = 1√

N
and (0,−1) embed-

ding into the line y =− 1√
N

.
However the distortion at Π(p),Π(p′) is

O

( 1√
N

1
N

)
= O(

√
N), (4)

while the distortion assuming there were points at
(0,1),(0,−1) would be

O

(
1
1√
N

)
= O(

√
N). (5)

Thus the lemma is established. �

Lemma 2 A set of N points on a circle can be embedded
into three lines selected by the problem solver with con-
stant distortion.

Proof. We consider the unit circle, C, and an associated
circumscribed equilateral triangle, T . We map the N points
on C to N geodetically proportionally spaced points on T ,
respecting the ordering of the points on C. Call this map
Π. We show that Π can neither expand nor contract dis-
tances by too much. The proof that Π does not expand too
much breaks down into a series of three fairly trivial ob-
servations, namely: (i) The geodesic distance on the circle
is an O(1)-APX to the associated Euclidean distance, (ii)
the geodesic distance on the triangle is an O(1)-APX to
the geodesic distance on the circle, and (iii) the Euclidean
distance between two points on a triangle is never greater
than the geodesic distance on the triangle (obvious). That
Π is at most a constant factor expansion means that the Eu-
clidean distance on the triangle is at most a constant factor
expansion to the associated Euclidean distance on the cir-
cle. The result follows by the transitivity of the O(1)-APX
relation if we can establish (i) and (ii).

We established the truth of (i) in our proof of Lemma 1.
(ii) is even easier since the approximation ratio is just the
ratio of the associated perimeters, which is 3

√
3

π
. The fact

that Π expands by at most a constant factor follows.
To show that Π contracts by at most a constant factor,

it suffices that (a) the geodesic distance on the circle does
not decrease distances relative to the Euclidean distance
on the circle, (b) the geodesic distance on the triangle does
not decrease distances relative to the geodesic distance on
the circle, and (c) the Euclidean distance on the triangle
does not contract distances by more than a constant factor
relative to the geodesic distance on the triangle. (a) and
(b) are obvious. For (c) consider Figure 1. By the law of

Figure 1. Comparison of the Euclidean distance, C, between two points
on an equilateral triangle, and the geodesic distance A+B.

cosines,

C2 = A2 +B2−2ABcos
π

3
= A2 +B2−AB. (6)

Now, without loss of generality, assume that A ≥ B and
that A = m+ε, B = m−ε (where m = A+B

2 and ε = A−B
2 ).

Then

C2 = (m+ ε)2 +(m− ε)2 +(m+ ε)(m− ε)

= m2 +3ε
2,
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and so C≥ A+B
2 . Thus the Euclidean distance contracts by

no more than a factor of 2 relative to the geodesic distance
on the equilateral triangle and so Π contracts by at most a
constant factor, and the lemma is established. �

We observe that it is not possible to extend Lemma 2
to an annulus of constant thickness. If it were possible
to make such an extension then it would be possible to
embed points on an ε-thick annulus into a disk with con-
stant distortion. However, in what is a variant of a rather
usual argument/counterexample, consider N points in the
annulus contained within a

√
N x
√

N square grid, each
grid point at a distance of δ = ε/N from the next. If we
embed these points onto the circle so that the distortion
of each point with its neighbor on the circle gets constant
distortion, then they must be placed at distance no smaller
than kδ from one another from some constant k. However,
the two furthest apart points on the circle will be approx-
imately Nkδ from one another, while they started at dis-
tance no greater than

√
2Nδ from one another. Thus they

incur a distortion of at least
√

N.
It is conceivable, however, that Lemma 1 can be ex-

tended to cover the case of an annulus of constant thick-
ness.
Definition: Say that a set of N points on the sphere is
distributed approximately uniformly if the geodetic dis-
tance between any two points in the set is Ω( 1√

N
) and there

is no empty patch (cap) of radius Ω( 1√
N
).

We believe the next lemma holds for an arbitrary set of
N points on the sphere but the best we can prove at present
is the following:

Lemma 3 An approximately uniformly distributed set of
N points on a sphere can be embedded into two planes
selected by the problem solver with distortion that is
O(N1/4).

Proof. Place N points approximately uniformly on a unit
radius sphere. We will embed the points on the surface
of the sphere onto two planes at z = ± 1

N1/4 . Points on the
bottom half of he sphere will be embedded onto the z =
− 1

N1/4 plane via the following two step process: (1) Project
each such point p first to the z = −1 plane via the unique
line through p that makes a 45◦ angle with the z-axis. Map
the south pole to the south pole. (2) Map points from the
z =−1 plane to the z =− 1

N1/4 via vertical projection. Do
analogously to embed points on the northern hemisphere
into the z = 1

N1/4 plane.
As in the case of the circle, projection of points on

a common hemisphere onto a plane incurs a constant
amount of distortion. For points near the equator and near
the south pole there is essentially no distortion while the
distortion is maximized for points midway between the
equator and the south pole, when the distortion is easily
seen to be

√
2.

Thus the biggest possible distortion either arises at the
mapping of potential points (pN , pS) where pN denotes a

point at the north (top) pole of the sphere and pS denotes its
antipodal point, or at pairs of points (p(θ,φ)top

, p(θ′,φ′)bottom
),

which denote a pair of points initially as close as possible
but on opposite hemispheres, and which therefore get em-
bedded into different planes. The distortion in the case of
(pN , pS) is:

Dist =
2
2

N1/4

= N1/4. (7)

While the distortion at (p(θ,φ)top
, p(θ′,φ′)bottom

) is

Dist =
2

N1/4

O( 1√
N
)
= O(N1/4), (8)

establishing the lemma. �

Lemma 4 Any set of N points on the surface of a sphere
can be embedded into four planes selected by the problem
solver with constant distortion.

The proof of this lemma proceeds by projecting the N
points on the sphere outward onto the regular tetrahedron
that has the given sphere as its inscribed sphere. One then
verifies that the Euclidean distance between two projected
points is both bounded above and below by a constant fac-
tor times the Euclidean distance determined by the original
points. The proof, the details of which we omit, is similar
in spirit, though a bit more cumbersome than the proof of
Lemma 2.

5 Embedding N Points on a Line and One Point
off the Line onto a Line or N Points on a Plane
and One Point off the Plane onto a Plane

Lemma 5 Consider a collection of an odd number, N, of
points on a line, each point one unit from the next, together
with one additional point at height

√
N above the center

point of the points on the line. Then any embedding of
these points into a line has distortion Ω(

√
N)

Proof (sketch). Label the points consecutively along the
line by P = {p1, ..., pN}, and refer to the point above the
line at distance

√
N by q. Further, denote the central point

among the points in P, p N+1
2

, by pcent.
We prove the lemma by contradiction. Suppose we have

a non-contracting embedding Π of P ∪ {q} into a line,
which has distortion o(

√
N). Consider first that some of

the points in P are mapped under Π to one side of Π(q) and
some to the other. It must then be the case that some pair
of adjacent points pi and pi+1 are mapped by Π to oppo-
site sides of Π(q). But if pi is mapped to one side of Π(q)
and pi+1 is mapped to the other, then, by non-contraction,
the distance between Π(q) and each of its closest neigh-
bors is at least

√
N and thus d(Π(pi),Π(pi+1))≥ 2

√
N so

the distortion in Π is at least 2
√

N. Thus, for Π to have
distortion o(

√
N) all points Π(pi) must be to one side of

Π(q).
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Since all points Π(pi) are to one side of Π(q) there is
a closest neighbor Π(p∗) to Π(q). Divide the points of
P, as evenly as possible into four sequential quarters. p∗

either comes from one of the outer quarters of {p1, ..., pN}
or from one of the two inner quarters. Label these quarters
P1/4,P2/4,P3/4 and P4/4, respectively.

On the one hand, if p∗ ∈ P1/4∪P4/4, a calculation shows

that the distortion in the mapping of q, pcent is at least
√

N
2 .

On the other hand, if p∗ ∈ P2/4 ∪ P3/4, an analogous
computation shows that there must be a pair of consecu-
tive points pi, pi+1 whose distortion is at least N/2, estab-
lishing the lemma.

Lemma 6 Consider a set of N points inside a disk of ra-
dius
√

N with largest empty subdisk of size O(1), together
with one additional point at height N1/4 above the center
point of the points in the disk. Then any embedding of
these points into the plane has distortion Ω(N1/4).

Proof (sketch). Suppose we have a non-expanding em-
bedding Π of the N points, P, in the disk, together with
the point above the center of the disk, which we again call
q, into the plane. Extend Π to be a non-expanding em-
bedding of all of R3 into R2 by Kirszbraun’s Theorem.
Since Π is Lipschitz (with Lipschitz constant at most 1),
Π is continuous. Let pcent be the centerpoint in P directly
below q. Consider the image under Π of the vertical di-
ameter of the disk Π(diam). This image is a continuous
curve through Π(pcent). Color the top half of Π(diam)
red and the bottom half green. Now consider the image
Π(diam) as the diameter turns through 180 degrees. Con-
tinue to color Π(top-half) red and Π(bottom-half) green.
A straight forward argument shows that either the end-
points of the red and green halves of these curves col-
lectively form a closed curve with Π(pcent) in its inte-
rior or at some point in the turning of the diameter ei-
ther the end point of the green curve intersects the red
curve or the end point of the red curve intersects the green
curve. Suppose one of these latter two cases holds, say it
is that the end point of the red curve intersects the green
curve. If pre is the pre-image of the end point of the red
curve at this juncture, then there is a point pg which is
the pre-image of a point along the green curve such that
d(Π(pre),Π(pg)) ≈ 1 while the points pre , pg lie along a
diameter and are at least

√
N apart in the pre-image. Thus,

in this case, Dist(Π) = Ω(
√

N).
On the other hand, if Π(pcent) is in the interior of the im-

age of the disk then consider Π(q), the image of the point
above pcent. If Π(q) lies inside the image of the boundary
of the disk, then since Π is non-expanding there is a point
of the disk that is approximately distance 1 or less from
Π(q). Since the point started at least at distance N1/4, the
incurred distortion is Ω(N1/4). On the other hand, if the
boundary of the disk lies between Π(q) and Π(pcent) then
we again find a distortion of Ω(N1/4).

Future Work

These results are just the first of a hoped for more detailed
characterization of how one incurs distortion on a point-
by-point basis embedding from one Euclidean space into
another of smaller dimension. In general if N points in Rk

can incur some maximum distortion when the points are
embedded in Rk′ , for k′ < k, how much distortion can be
incurred from a point set of the same size N, but where all
but M of the N points lie in some k′-flat, and M = o(N)?

Many questions also remain regarding the low distor-
tion embedding of points on an N-sphere into hyperplanes.
For the 2-sphere we have results for one, two and four
planes selected by the problem solver, but how about three
planes? Can one achieve lesser order of magnitude dis-
tortion using three planes than two? We currently do not
know how to do this and speculate that it is not possible.
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