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Abstract

Colorful linear programming (CLP) is a generalization
of linear programming that was introduced by Bárány
and Onn. Given k point sets C1, . . . , Ck ⊂ Rd that
each contain a point b ∈ Rd in their positive span, the
problem is to compute a set C ⊆ C1 ∪ · · · ∪ Ck that
contains at most one point from each set Ci and that
also contains b in its positive span, or to state that
no such set exists. CLP is known to be NP-hard.

We consider a generalization of CLP in which we
are given additionally for each set Ci a number li ∈ N,
i = 1, . . . , k, and we want to find a set that contains
at most li points from Ci. We call this problem gen-
eralized colorful linear programming (GCLP). While
we show that even seemingly simple cases of GCLP
remain NP-hard, we present a weakly-polynomial al-
gorithm for the special case that there are only two
colors and that the vectors of each set Ci contain
b in their positive span. This case is particularly
interesting due to its connection with the colorful
Carathéodory theorem. Furthermore, we consider ad-
ditional applications of CLP to problems on colored
graphs.

1 Introduction

The colorful Carathéodory theorem [2] states that
given C1, . . . , Cd+1 ⊂ Rd point sets that all contain
the origin in their convex hulls, there always exists a
set C ⊂ C1 ∪ · · · ∪ Cd+1 that contains at most one
point from each set Ci, i = 1, . . . , d + 1, and that
also contains the origin in its convex hull. We call the
sets Ci, i = 1, . . . , d+1, color classes and we call a set
with at most one point from each color class a colorful
choice. Bárány also gave the following more general
version.

Theorem 1 ([2]) Let C1, . . . , Cd ⊂ Rd be point sets
and b ∈ Rd a point with b ∈ pos(Ci), for i = 1, . . . , d.
Then, there is a colorful choice C with b ∈ pos(C).
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Here, we denote with pos(P ) = {
∑

pi∈P
αipi | αi ≥

0 for all pi ∈ P} for a set P ⊂ Rd the set of all non-
negative linear combinations of points in P . Using a
simple lifting argument, it can be shown that Theo-
rem 1 implies the classic (convex) version of the color-
ful Carathéodory theorem as stated in the beginning.

In the spirit of the colorful Carathéodory theorem,
Bárány and Onn [3] generalized linear programming
to the colorful setting: given a point b ∈ Rd and point
sets C1, . . . , Ck ⊂ Rd, we want to find a colorful choice
C with b ∈ pos(C) or state that there is none. We
call this problem colorful linear programming (CLP)
and we call the decision problem to decide whether
there exists such a colorful choice DCLP. Bárány and
Onn [3] showed that DCLP is NP-complete even if
k = d and each Ci contains 0 in its convex hull. This
was extended by Mulzer and Stein [8] who showed
that DCLP is NP-complete even if k = d+1 and each
Ci does not necessarily contain 0 in its convex hull,
and by Meunier and Sarrabezolles [7] who showed that
DCLP is NP-complete for all values of k if each Ci
does not necessarily contain 0 in its convex hull. We
define the following generalization of CLP (GCLP):
given a point b ∈ Rd, point sets C1, . . . , Ck ⊂ Rd, and
numbers l1, . . . , lk ∈ N, we want to find a set C such
that |C ∩Ci| ≤ li for i ∈ [k] and such that b ∈ pos(C)
or state that there is none. We obtain CLP by setting
l1 = · · · = lk = 1.

Since CLP is NP-hard, GCLP is NP-hard as well.
However, as with regular linear programming and in-
teger programming, GCLP is very versatile and can
be used to model colorful versions of many combina-
torial problems. Therefore, it is of interest to identify
special cases of GCLP that can be solved in poly-
nomial time or to show that even the more restricted
version of the problem remains NP-hard. We consider
several such examples and delineate a more precise
boundary between easy and hard colorful problems.

2 Generalized Colorful Linear Programming

In CLP, we want to find a set that contains at most
one point from each color class. In generalized col-
orful linear programming (GCLP) we allow addition-
ally to be given k nonnegative integers l1, . . . , lk that
determine the number of points that we are allowed
to take from each color class. We call a set C with
|C∩Ci| ≤ li for i ∈ [k] an (l1, . . . , lk)-colorful choice or
(with a slight abuse of notation) just a colorful choice.
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2.1 Complexity

Since GCLP is a generalization of CLP, it remains NP-
hard. However, even seemingly simple special cases
such as k = 1∧l1 = d [3, 6] or k = 2∧l1 = l2 = d/2 [3]
have been show to be NP-hard as well. We show that
even if the number of colors is fixed and each li is a
constant fraction of |Ci|, i ∈ [k], the problem remains
NP-hard. We prove this for the convex version of
GCLP. That is, we want to find a colorful choice C
that contains b in its convex hull instead of just in
its positive span. Without loss of generality, we can
assume b = 0. By a lifting argument, it can be easily
shown that the convex version of GCLP is a special
case of GCLP as stated in the introduction. Hence,
any hardness results for the convex version hold for
the cone version as well. The following theorem is
the main tool in the reduction. The theorem was first
obtained by Knauer et al. [6], albeit with a different
proof. We compare both proofs below.

Theorem 2 Let P ⊂ Rd be a set of size 2d. It is NP-
complete to decide whether there is a subset P ′ ⊂ P
of size d containing the origin in its convex hull.

Proof. Let A = {a1, . . . , ad} be an instance of Par-
tition, for d even. For i ∈ {1, . . . , d − 1}, we de-
fine the vector vi ∈ Rd as having its ith coordinate
equal to 1, its last coordinate equal to ai, and all
other coordinates equal to 0. The vector vd has all
its coordinates equal to −1 except for the last co-
ordinate, which is equal to ad. Similarly, we define
vectors wi ∈ Rd, and just replace the last coordi-
nate by −ai. Assume there is a partition A1, A2

of A with
∑
a∈A1

a =
∑
a∈A2

a. Then, we have∑
ai∈A1

vi = −
∑
ai∈A2

wi and hence 0 ∈ conv({vi |
ai ∈ A1} ∪ {wi | ai ∈ A2}). On the other hand,
let V ′ ⊆ {v1, . . . ,vd} and W ′ ⊆ {w1, . . . ,wd} be
s.t. |V ′| + |W ′| = d and s.t. 0 =

∑
v∈V ′ λvv +∑

w∈W ′ λww, where
∑

v∈V ′ λv +
∑

w∈W ′ λw = 1 and
λv, λw ≥ 0 for all v ∈ V ′,w ∈ W ′. By construction,
for all i = 1, . . . , d, we have either vi ∈ V ′ or wi ∈W ′
and furthermore, all coefficients λv, λw, v ∈ V ′, w ∈
W ′, are equal. Hence, the sets A1 = {ai | vi ∈ V ′},
A2 = {ai | wi ∈ W ′} form a partition of A with∑
a∈A1

a =
∑
a∈A2

a. �

We note that the set P constructed in the proof of
Theorem 2 was first described by Bárány and Onn [3,
Theorem 5.1]. However, they used it to prove the
weaker statement DCLP is NP-complete even for k =
d. This result is a consequence from Theorem 2 by
setting C1 = · · · = Cd = P . Also, NP-hardness of the
two special cases k = 1∧ l1 = d and k = 2∧ l1 = l2 =
d/2 follows from Theorem 2 by setting C1 = P∧l1 = d
and C1 = C2 = P ∧ l1 = l2 = d/2, respectively.

Note further that the problem from Theorem 2 was
first shown to be NP-complete by Knauer et al. [6].

Additionally, the proof of Theorem 2 gives an alter-
native proof for the #P-completeness of computing
the simplicial depth. This hardness result was first
obtained by Afshani et al. [1] and the alternative re-
duction is analogous to the proof of [1, Theorem 9].
It is not immediate that the reduction from Knauer
et al. [6] has similar implications.

In the following, let GCLPk(r1, . . . , rk), ri ∈ (0, 1),
denote GCLP restricted to instances with exactly k
color classes and the li’s are given by li = drinie for
i ∈ [k], where ni = |Ci|. That is, we are allowed to
take a constant fraction of each color class.

Theorem 3 For any fixed k ∈ N and any fixed ratios
r1, . . . , rk ∈ (0, 1), GCLPk(r1, . . . , rk) is NP-hard.

Proof. We prove the statement by a reduction simi-
lar to the proof of Theorem 2. Given some partition
instance A = {a1, . . . , ad}, let P ⊂ Rd, |P | = 2d,
denote the same point set as in the proof of The-
orem 2. If r1|P | = d, we set C1 = P and create
“dummy” points for C2, . . . , Ck that will never be part
of a convex combination of 0. To ensure this, we lift
P to Rd+1 by appending a 0-coordinate. Now, we set
Ci = {ci} for i = 2, . . . , k, where the coordinates of
ci ∈ Rd+1 are 0 in dimensions j = 1, . . . , d and some
positive number in dimension d+ 1.

Now, assume dr1|P |e < d and hence |P | < d/r1.
We add bd/r1 − |P |c dummy points together with P
to C1 and create the other color classes as before.
Then, we have dr1|C1|e = d as desired.

The last case is dr1|P |e > d. Again, we set C1 = P
and construct C2, . . . , Ck as above. To ensure that we
only take d points from P , we add “mandatory” points
to C1 that have to be part of any convex combination
of 0. We construct a mandatory point q by introduc-
ing a new dimension in which we set the coordinates
of all other points to 1. The new point q has coordi-
nates set to 0 in all but the new dimension, where it is
set to −1. A short calculation reveals that we have to

add m =
⌊
r1|P |−d
1−r1

⌋
mandatory points together with

P to C1 in order to ensure that dr1|C1|e = d+m.
Thus, the existence of a (r1|C1|, . . . , rk|Ck|)-colorful

choice is equivalent to the existence of a partition of
A into two sets A1, A2 with

∑
a∈A1

a =
∑
a∈A2

a.
Since r1 is constant, we can create the additional
dummy/mandatory points in polynomial time. �

2.2 A Special Case

We now consider the following special case of GCLP:
given a point b ∈ Rd, a ratio r ∈ [0, 1], and point sets
C1, C2 ⊂ Rd of size d with b ∈ pos(Ci) for i = 1, 2,
we want to find an (drde, brdc)-colorful choice C with
b ∈ pos(C), or state that there is none.

Theorem 1 guarantees the existence of such a color-
ful choice: we set the first drde color classes to copies
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of C1, and the next brdc color classes to copies of C2.
Hence, this simple case of only two colors is particu-
larly interesting as we know that there always exists a
solution, but computing it is already nontrivial. Note
that for l1 = drde − 1 or l2 = brdc − 1 the problem
becomes NP-hard as a consequence of Theorem 2.

We give a weakly-polynomial algorithm for the two-
color case that is based on constructing a family of
linear programs. Let L denote the linear system Ax =
b,x ≥ 0, where A ∈ Rd×2d contains C1 as its first
d columns and C2 as its second d columns. In the
following, we assume that L is in general position.
Given a cost vector c ∈ Rd, we denote with Lc the
linear program that maximizes the objective function
cTx subject to the equalities and inequalities from L.
Let c1 and c2 be two generic cost vectors such that C1

and C2 are optimal bases. One can show that c1 and
c2 can be obtained in polynomial time. For λ ∈ [0, 1],
we denote with cλ the cost vector λc1 + (1 − λ)c2
and with Lλ the linear program Lcλ . That is, the
linear programs Lλ, λ ∈ [0, 1], differ only in their cost
functions which are convex combinations of c1 and c2.
Our construction has the following properties.

Lemma 4 There is a finite number of ordered in-
tervals I1, . . . , Is with pairwise disjoint interiors such
that

⋃s
i=1 Ii = [0, 1] and such that

(i) The length of each interval Ii, i ∈ [s], is at least
1/K, where K ∈ N and logK is bounded by a
polynomial in the description size of L.

(ii) For each i ∈ {1, . . . , s}, there is a unique feasi-
ble basis that is optimal for all Lλ, where λ is
contained in the interior of Ii.

(iii) For λ belonging to two distinct intervals Ii, Ii+1,
there are exactly two optimal bases that differ
exactly by one column.

Proof. (i): This follows from standard tools such as
Cramer’s rule and the Leibniz formula for determi-
nants. (ii) & (iii): Let λ ∈ [0, 1] and let B be an
optimal basis for Lλ. We denote with N the set of
columns from A not in B. Then, the reduced cost vec-
tor [5] is given by rB,λ = (cλ)N − ATN (A−1B )T , where
(cλ)N denotes the subvector of cλ restricted to the
coordinates corresponding to columns in N , AN de-
notes the submatrix of A with columns in N , and AB
denotes the submatrix of A with columns in B. If
the sign of the ith coordinate of rB,λ is positive, then
swapping the corresponding column from N into B
increases the cost and otherwise (if the sign is non-
positive), the cost remains equal or decreases. Since
we want to maximize the objective function, a basis
is optimal iff all coordinates of rB,λ are non-positive,
and it is unique if all coordinates of rB,λ are negative.

We obtain the intervals I1, . . . , Is iteratively as fol-
lows: initially we set λ = 0. By general position and

genericity of c1, the unique optimal basis for Lλ is
C1, i.e., all coordinates of rB,λ are negative. Now, we
continuously increase λ until one of the coordinates of
rB,λ becomes 0. Let λ1 denote this value and let i be
the coordinate of rB,λ1 that is 0 (by general position
and genericity, i is unique). Since C1 is not an opti-
mal basis for L1, λ1 exists. Because each coordinate
of rb,λ is a linear function in λ, (rb,λ′)i is positive
for all λ′ > λ1. Then, there exists an ε > 0 such
that i is the only nonnegative coordinate of rb,λ′ for
λ′ ∈ I = (λ1, λ1 + ε). Hence, for all λ′ ∈ I, the ba-
sis B′ that is obtained by swapping the column from
N that corresponds to coordinate i of rb,λ into B is
the unique optimal basis. Note further, that both B′

and B are optimal for Lλ1
. Set I1 = [0, λ1] and con-

struct iteratively the next intervals until B′ = C2.
Let λs ∈ [0, 1] be the minimum value for which C2

is an optimal basis for Lλs . Then, C2 is optimal for
every λ′ ∈ [λs, 1]. We set Is = [λs, 1] and conclude
the construction of the intervals. �

We now describe the complete algorithm. In round
i, we maintain an interval [ai, bi] ⊂ [0, 1], such that the
optimal basis for Lai contains at least drde columns
from C1 (and due to the general position assumption,
at most b(1−r)dc columns from C2) and such that the
optimal basis for Lbi contains at most drde columns
from C1. We maintain the following invariant: there
exists a λ ∈ [ai, bi] such that the optimal basis for Lλ
is the desired (drde, brdc)-colorful choice.

Initially, we set [a1, b1] = [0, 1]. By definition, C1 is
the optimal basis for L0 and C2 is the optimal basis
for L1. By Lemma 4(iii) optimal bases for two adja-
cent intervals differ only in one column, and hence the
invariant holds for [a1, b1]. We solve then the linear
program Lλ for λ = (ak+bk)/2 and let B∗ denote the
optimal basis. If B∗ contains at least drde columns
from C1, we set ai+1 to λ and bi+1 = bi. Otherwise,
we set ak+1 = ak and bk+1 = λ. Let B1 be the opti-
mal basis for Lai+1

and let B2 be the optimal basis for
Lbi+1 . Since B1 contains at least drde columns of C1

and since B2 contains at most drde columns of C1, the
invariant holds for [ai+1, bi+1] again by Lemma 4 (iii).

After i∗ = O(logK) iterations, the interval [ai∗ , bi∗ ]
is contained in the union of two adjacent intervals
Ij , Ij+1 with j ∈ [s − 1]. Let Bj and Bj+1 be the
optimal bases for Ij and Ij+1, respectively. Hence, by
Lemma 4 (ii), either Bj or Bj+1 is the desired basis.

Each round requires polynomial time, and the num-
ber of rounds is bounded by a polynomial in the bit-
size of the input. The following theorem is immediate.

Theorem 5 Let b ∈ Rd be a vector and let C1, C2 ⊂
Rd be two sets of size d with b ∈ pos(Ci) for
i = 1, 2. Furthermore, let r ∈ [0, 1] be a param-
eter. Then, there is an algorithm that computes
an (drde, brdc)-colorful choice C with b ∈ pos(C) in
weakly-polynomial time.
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3 Applications of Colorful Linear Programming

We consider two problems on colored graphs that
can be cast as a CLP and analyze their complexity.
The first problem is called ColorfulPath: given
a directed graph G = (V,E) whose edges are parti-
tioned into k color classes C1, . . . , Ck and two vertices
s, t ∈ V , the problem is to decide whether there ex-
ists a directed path from s to t with at most one edge
from each color class. ColorfulPath is a special
case of CLP, since the existence of an s-t path can be
modeled as a flow. Chakraborty et al. [4] showed this
problem to be NP-complete by a reduction from 3-
SAT. We present a similar but simplified proof, that
reduces the number of necessary colors from O(mn2)
to O(m), where m is the number of clauses and n is
the number of variables in the 3-SAT formula.

Theorem 6 ColorfulPath is NP-complete, even
if the graph G = (V,E) is acyclic and |E| = O(|V |).

Proof. Consider a 3-SAT formula Φ, with n variables
x1, . . . , xn and m clauses C1, . . . , Cm, each containing
exactly three literals. Our directed graph has 3m col-
ors cjk, j = 1, . . . ,m and k = 1, 2, 3, one for each
literal in each clause. We allow multiple edges be-
tween two vertices. However, our construction can be
easily modified to at most one edge per vertex-pair by
introducing new vertices. For each clause Cj we have
one clause gadget Gj and for each variable xi, we have
one variable gadget G′i. The clause gadget Gj for a
clause Cj consists of two vertices {sj , tj} and three
directed edges from sj to tj with colors cj1, cj2, and
cj3. The variable gadget G′i for a variable xi consists
of two edge-disjoint paths that are vertex disjoint ex-
cept at the start and the end vertex. The first path
contains one edge for each positive occurrence of xi
in Φ, colored with the color that corresponds to this
literal. The second path contains one analogous edge
for each negative occurrence of xi in Φ. The graph
G is obtained by concatenating all clause gadgets and
all vertex gadgets and by identifying the last vertex
in each gadget with the first vertex in the following
gadget. This construction can be performed in poly-
nomial time, and there is a colorful path through all
gadgets if and only if Φ is satisfiable. �

We conclude with AnotherColorfulCycle
(ACC): given a graph G = (V,E), where |E| = 2|V |
and all edges are colored with n = |V | colors such
that exactly two edges have the same color, and a
colorful Hamilton cycle in G, we want to find another
colorful cycle (not necessarily Hamiltonian). This is a
special case of the PPAD-complete problem Anoth-
erColorfulSimplex [7] (ACS) and related to the
PPA-problem AnotherHamiltonPath [9] (AHP),
in which we are given a graph G and a Hamilton path
in G, and we want to find another Hamilton path in G

or in its complement. While there are no polynomial-
time algorithms known for ACS and AHP, we show
that ACC can be solved efficiently.

Theorem 7 AnotherColorfulCycle can be
solved in polynomial time.

Proof. Consider the bipartite graph G′ = (V ′, E′)
with vertices V ′ = V ∪ {C1, . . . , Cn}. There is an
edge (v, Ci) ∈ E′ if there is an outgoing edge from a
vertex v ∈ V with color Ci in G. Note that there is a
bijection between E′ and E. Furthermore, the edges
M ⊂ E′ in G′ that correspond to the edges of the
Hamiltonian cycle in G are a perfect matching in G′.

Since |E| ≥ |V |, there is a cycle C in G′. As each
vertex Ci ∈ V ′, i ∈ [n], is incident to two edges,
and since one of them is contained in M , C is of even
length and its edges alternate between M and E′ \M .
Then, M ′ = M ⊕ C is a perfect matching different
from M . It induces a colorful set of edges where each
vertex v ∈ V has exactly one outgoing edge in M ′.
Hence, M ′ corresponds to a colorful cycle in G. �
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