EuroCG 2016, Lugano, Switzerland, March 30-April 1, 2016

Computing Minimum-Link Separating Polygons in Practice*

Moritz Baum? Thomas Blésiust

Abstract

We tackle the problem of separating two given sets of
polygons by a polygon with minimum number of seg-
ments. As the complexity in our specific setting is un-
known, we propose heuristics that are simple enough
to be implemented in practice. A key ingredient is a
new practical linear-time algorithm for minimum-link
paths in simple polygons. Experiments in a challeng-
ing realistic setting show excellent performance of our
algorithms in practice.

1 Introduction

We study a problem motivated by isocontour visual-
ization in road networks, where the goal is to separate
the reachable subgraph for a given resource limit from
the remaining unreachable part. Given an embedding
of (a planarization of) such a network into the plane,
the geometric subproblem is to separate reachable and
unreachable boundaries by a simple polygon. We con-
sider three objectives for such range polygons. They
must be exact (i.e., correctly separate the bound-
aries); they should be of low complezity (i. e., have few
segments) for an appealing visualization and efficient
rendering; the algorithms should be fast in practice,
even on large inputs. In this extended abstract, we
focus on geometric aspects of this problem; see the
full version for omitted details and proofs [I].

Fig. [1] shows an example of a border region B, the
input of the geometric subproblem. It is defined by
two sets R and U of hole-free plane polygons, contain-
ing boundaries of the reachable and unreachable part,
respectively. We seek a simple polygon with minimum
number of links that separates U from R. In general,
this is an A'P-complete problem [3]. In our case, we
have |R| = 1 since the reachable part is connected by
definition, which, to the best of our knowledge, yields
an unresolved open problem [3]. First, consider a bor-
der region B with |R| = |U| = 1. A polygon of min-
imum complexity that separates the polygons can be
found in O(nlogn) time [7]. However, the algorithm
is rather involved and requires computation of several
minimum-link paths. We propose a simpler algorithm

*Partially supported by the EU FP7 under grant agreement
no. 609026 (project MOVESMART)

TInstitute of Theoretical Informatics, Karlsruhe Institute of
Technology (KIT), Germany. Email: first.last@kit.edu

tKarlsruhe Institute of Technology / Hasso Plattner Insti-
tute, Germany. Email: thomas.blaesius@hpi.de

Andreas Gemsal

Ignaz Rutter’ Franziska Wegner®

A @%L

Figure 1: A border region (white area) with a reach-
able boundary R and an unreachable boundary U
with components Uy to Uy. Shaded areas show reach-
able (dark gray) and unreachable (light gray) parts.

that uses at most two additional segments, runs in lin-
ear time, and requires a single run of a minimum-link
path algorithm. It adds an edge e to B that connects
both boundaries. In the resulting polygon B’, it com-
putes a path with minimum number of segments that
connects the two sides of e. The algorithm of Suri [6]
computes such a minimum-link path 7 in linear time.
We obtain a separating polygon S by connecting the
endpoints of 7 along e. For practical performance,
Section 2] proposes a simpler linear-time algorithm for
the key ingredient of our approach, the computation
of a minimum-link path. Section [3] then covers the
general case of |[U| > 1. Since its complexity is un-
known, we focus on heuristic approaches that work
well in practice, but do not give guarantees on the
complexity of the resulting range polygons. We eval-
uate our algorithms on realistic input in Section [

2 A Practical Minimum-Link Path Algorithm

We address the subproblem of computing a minimum-
link path (a polygonal path with minimum number of
segments) between two edges a and b of a simple poly-
gon P that lies in the interior of P. The algorithm
of Suri [6] starts by triangulating the input polygon.
In our scenario, we preprocess this step by triangu-
lating all faces of the planar input graph only once.
Afterwards, in each step of Suri’s algorithm a win-
dow (which we define in a moment) is computed. To
this end, several calls to a subroutine computing vis-
ibilty polygons are necessary. While this is sufficient
to prove linear running time, it seems wasteful from a
practical point of view. In the following, we present a
simpler linear-time algorithm for computing the win-
dows. It can be seen as a generalization of an algo-

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a

journal.

32nd European Workshop on Computational Geometry, 2016

Figure 2: (a) Important triangles. (b) The window
w(a) is an edge of V(a) (shaded). (c¢) The shortest
paths (blue) intersect for i = 8 but not for i = 6.

rithm for approximating piecewise linear functions [4].
Let G be the (embedded) graph obtained by trian-
gulating P. Let t, and %, be the triangles incident
to a and b, respectively. The (weak) dual graph of G
has a unique path t, = t1,ta,...,tx_1,tx = tp from ¢,
to tp; see Fig. 2h. These triangles are important and
their position in the path is their index. The visibility
polygon V(a) of the edge a in P is the polygon that
contains a point p if and only if there is a point ¢
on a such that the line segment pq lies inside P. Let
j be the highest index such that the intersection of
the triangle ¢; with V(a) is not empty. The window
w(a) is the edge of V(a) that intersects ¢; closest (wrt.
minimum Euclidean distance) to the edge between ¢;
and tj41; see Fig. 2b. Note that w(a) separates the
polygon P into two parts. Let P’ be the part con-
taining b. A minimum-link path from a to b in P
is obtained by adding an edge from a to w(a) to a
minimum-link path from w(a) to b in P’. Thus, the
next window is computed in P’ starting from w(a).
We describe how to compute the first window. Let
G; be the subgraph of G induced by the triangles
t1,...,t; and let P; be the polygon bounding the outer
face of G;. Then P; has two special edges, namely a
and the edge shared by ¢; and ¢; 1, called b;. Let £(a)
and r(a), and £(b;) and r(b;) be the endpoints of a and
b;, respectively, such that their clockwise order is r(a),
L(a), £(b;), r(b;); see Fig. . The left shortest path !
is the shortest polygonal path (wrt. Euclidean length)
in P; that connects ¢(a) with ¢(b;). The right shortest
path m is defined symmetrically; see Fig. . One can
show that ;41 is (partially) visible from « if and only
if the left and right shortest paths in P; have empty
intersection. Moreover, if these paths do not inter-
sect, they are outward conver, i.e., wf and 7} have
only left and right bends, respectively [2]. These two
paths together with a and b; are called hourglass. To
keep track of parts of ¢;4; visible from a, we use two
visibility lines. To define them, consider the shortest
path in the hourglass connecting r(a) with £(b;); see
Fig.[3h. It is the concatenation of a prefix of 7], a line
segment between vertices z and y, and a suffix of 7f.
The straight line through = and y is the left visibil-
ity line denoted by Af. The right visibility line \! is

(b)

Figure 3: (a) Shortest path from r(a) to £(b;). (b) Vis-
ibility lines spanning the (shaded) visibility cone.

defined symmetrically. The region between A and A!
is the visibility cone; see Fig. Bp. A point in ¢;41 is
visible from a if and only if it lies in the visibility cone.

These observations justify the following approach
for computing the window w(a). We iteratively in-
crease ¢ until the left and the right shortest path of
the polygon P; intersect. We then know that the tri-
angle t;,;1 is no longer visible. As the left and the
right shortest paths did not intersect in P;_1, the tri-
angle t; is visible from a. Recall that w(a) is the edge
of the visibility polygon V'(a) that intersects t; clos-
est to the edge between ¢; and t; ;. Thus, w(a) is a
segment of one of the two visibility lines. It remains
to fill out the details (how to compute the paths and
the visibility lines) and describe later steps, when we
start at a window instead of an edge.

We start with the details. Assume the triangle ¢; is
still visible from a, i.e., 7¢_; and 77_; do not intersect.
Assume further that we computed the left and right
shortest paths w/_, and 77_; as well as the visibility
lines A¢_; and \/_, in a previous step. Without loss
of generality, let the three corners of t; be £(b;—1),
£(b;), and r(b;) = r(bi—1) (as in Fig. [4). There are
three possibilities; see Fig. The new vertex £(b;)
lies either in the visibility cone spanned by)\f_l and
A1, to the left of AY_|, or to the right of \I_,. We
know that a point in ¢; is visible from a if and only
if it lies inside the visibility cone. Thus, the edge b;
between t; and ¢,;1 is no longer visible if and only
if the new vertex £(b;) lies to the right of A]_;; see
Fig. [b. In this case, we can stop and output the
desired window w(a), which is a segment of A\J_;; see
Fig. . In the other two cases (Fig. 4h and Fig.),
we have to compute the new left and right shortest
paths 7/ and 77 and the visibility lines A\{ and AJ
(Fig. and Fig.) Note that the right shortest
path and the right visibility line remain unchanged,
ie, 7 = ', and A = _,. The new path 7¢
is obtained by concatenating the prefix of 7¢ ; with
endpoint = and the segment from = to £(b;), where
x is the latest vertex on mf_; such that the result is
outward convex. To get the new left visibility line)\f,
we distinguish the two remaining cases. If £(b;) lies
to the left of ¢ | (Fig.)7 we obtain A\f = \{_,; see
Fig.[dl. If £(b;) lies in the visibility cone (Fig. [dh), the

EuroCG 2016, Lugano, Switzerland, March 30-April 1, 2016

Figure 4: The three cases for the position of ¢(b;) and
the updated shortest paths and visibility lines.

visibility line changes. Let x be the latest vertex on
m; such that the concatenation of the subpath from
r(a) to z with the segment from x to the new vertex
(b;) is outward convex. Then A! is the line through z
and £(b;); see Fig. . One can show that the point x
where X! intersects 77 moves forward along 7" during
the algorithm (which is relevant for the running time).

Lemma 1 Let t; be the triangle with the highest in-
dex that is visible from a. Then our algorithm com-
putes the first window w(a) in O(h) time.

The window o' = w(a) separates P into two smaller
polygons. Let P’ be the part including the edge b. To
get the next window w(a’), we have to apply the above
procedure to P’ starting with a’. However, this would
require to partially retriangulate P’. More precisely,
let ¢, be the triangle with highest index that is visible
from a; see Fig. . Then b, separates P’ into an
initial part Pj and the rest (having b on its boundary).
The latter part is properly triangulated, but P{ is not.
While we could retriangulate P, this would require an
efficient subroutine for triangulation and a dynamic
data structure. Instead, we propose a much simpler
method for computing the next window.

The idea is to compute shortest paths in P} from
{(a’) to £(by,) and from r(a’) to r(by); see Fig.[5b. We
denote these paths by 7§ and 75, respectively. More-
over, we compute the corresponding visibility lines A§
and Aj. Afterwards, we can continue with the cor-
rectly triangulated part as before. Concerning the
shortest paths, note that the right shortest path 7 is
a suffix of the previous right shortest path, which we
already know. For the left shortest path 7§, consider
the polygon induced by the triangles intersected by a’;
see Fig. @: Let v1,...,v4 be the sequence of vertices
on the outer face of this polygon (in clockwise direc-
tion) from £(a’) = vy to €(by) = vy. To obtain =f,
we start with an empty path and iteratively append
the next vertex from this sequence while maintaining
the path’s outward convexity by successively remov-
ing the second to last vertex if necessary. It remains
to compute the initial visibility lines A§ and A\j. Note
that the whole edge by, is visible from a’, since a’ inter-
sects the triangle t;,. It follows that A§ is the line that
goes through ¢(by,) and through the unique vertex on

V1 V2
S a U3
/
N 5 V4
) b \ s
, P Ve

Figure 5: Initial steps for computing the next window,
when starting at the previous window a’.

7y such that \§ is tangent to 75; see Fig. |[5b. The
same holds for the right visibility line. With these in-
sights, it is not hard to compute the paths wé and)
and the corresponding visibility lines in O(|Pj]|) time.

We compute subsequent windows until we find the
last edge b. A minimum-link path 7 is obtained by
connecting each window w(a) to its first edge a by
a straight line [6]. Lemma [1| and our considerations
concerning initial paths imply the following theorem.

Theorem 2 Given two edges a and b of a simple
polygon P, our algorithm computes a minimum-link
path from a to b contained in P in linear time.

3 Heuristics for the General Case

We outline heuristics for the case of U] > 1. Fig. [f]
sketches results in a small example. First, RP-RC
(range polygon, extracted reachable components) sim-
ply returns the reachable boundary R. This approach
is similar to previous algorithms for isochrones [5].
Second, RP-TS (triangular separators) uses the trian-
gulation to separate B along edges for which both
endpoints are in R. The modified instances consist of
single unreachable components that are separated by
the algorithm from Section |2} Third, RP-CU (connect-
ing unreachable components) inserts new edges that
connect the components of U to create an instance
with |U| = 1. Finally, RP-SI (self-intersecting poly-
gons) modifies the approach described in Section
to compute a possibly self-intersecting minimum-link
path separating R and U. To obtain the range poly-
gon, it is rearranged at intersections.

(d)

Figure 6: Results (red) of RP-RC (a), RP-TS (b),
RP-CU (c), and RP-SI (d), starting at indicated edges.

32nd European Workshop on Computational Geometry, 2016

Figure 7: Real-world example of isocontours showing
the range of an electric vehicles at the black disk (near
Bern, Switzerland) and a state of charge of 2kWh.

4 Evaluation

We evaluate our approaches (implemented in C++)
on a graph representing the road network of Europe,
with 22 million vertices and 52 million edges. Fig. [7]
shows isocontours visualizing the range of an electric
vehicle. The result of RP-RC (left) has more than
10000 segments, even in this medium-range example.
The result of RP-CU (right) uses much fewer (416) seg-
ments to represent the same isocontour. Note that the
isocontour contains holes, due to unreachable high-
ground areas. Hence, it has several border regions.

For our analysis, we focus on large ranges (roughly
500km with 85kWh batteries). Table [1| shows re-
sults of all heuristics from Section [3] averaged for
1000 queries from sources picked uniformly at ran-
dom. Timings include extraction of the border region
from the input graph, which is part of the work re-
quired in our scenario. For RP-SI, we report figures
for unprocessed polygons with self-intersections. Run-
ning times are well below 30ms for all approaches.
The simpler heuristics, RP-RC and RP-TS, are faster
by a factor of 2 to 3. However, polygons computed
by RP-RC have a much higher complexity (by about a
factor of 50). Results of RP-TS have low complexity,
but the triangular separation increases the number of
components significantly (all other approaches have
the minimum number of components, i.e., the num-
ber of border regions). For RP-CU and RP-SI, the ad-
ditional effort pays off, as they keep complexity close
to the optimum (off by at most 6 % according to a
lower bound induced by the results of RP-SI).

Table 1: Results for isocontours. We show the number
of components of the result (Cp.), complexity (Seg.),
self-intersections (Int.), and running time in ms.

Algorithm Cp. Seg. Int. Time

RP-RC 131 92554 — 9.46
RP-TS 219 1973 — 7.78
RP-CU 131 1820 — 2511
RP-SI 131 1781 15.06 22.25

Table 2: Minimum-link path algorithm performance.
We report input complexity (|P]), visited triangles
(v.Tr.), links in the result (Seg.), and time in ms.

Scenario [P] v.Tr. Seg. Time
EV, 16 kWh 134049 9334 416 0.72
Iso, 60 min 135112 11965 701 1.03
EV, 8 kWh 357335 33030 1329 3.14
Iso, 500 min 637224 69398 3204 6.57

We evaluate the minimum-link path algorithm from
Section [2| in four scenarios (ranges for 16kWh and
85 kWh batteries and isochrones for 60 and 500 min-
utes). For each of 1000 random queries, we modi-
fied the largest border region such that |[U| = 1 (us-
ing RP-CU). Then, we added an edge connecting the
two components and computed a minimum-link path
between its two sides. Recall that triangulation of
the input is part of preprocessing, hence it is not re-
ported in the table. As Table 2] shows, the running
time increases with input complexity. However, our
algorithm runs in less than 10 milliseconds on aver-
age in all cases. Isochrone scenarios are slightly harder
due to the different shape of the border regions.

Overall, we see that our approaches are suitable for
interactive applications on inputs of continental scale.

Acknowledgments. We thank Roman Prutkin for
interesting discussions.

References

[1] M. Baum, T. Blédsius, A. Gemsa, I. Rutter, and
F. Wegner. Scalable Isocontour Visualization in Road
Networks via Minimum-Link Paths. Technical Report
abs/1602.01777, ArXiv e-prints, 2016.

[2] L. J. Guibas, J. E. Hershberger, D. Leven, M. Sharir,
and R. E. Tarjan. Linear-Time Algorithms for Visibil-
ity and Shortest Path Problems Inside Triangulated
Simple Polygons. Algorithmica, 2(1-4):209-233, 1987.

[3] L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and
J. S. Snoeyink. Approximating Polygons and Sub-
divisions with Minimum-Link Paths. International
Journal of Computational Geometry € Applications,
3(4):383-415, 1993.

[4] H. Imai and M. Iri. An Optimal Algorithm for Ap-
proximating a Piecewise Linear Function. Journal of
Information Processing, 9(3):159-162, 1987.

[5] S. Marciuska and J. Gamper. Determining Objects
within Isochrones in Spatial Network Databases. In
Advances in Databases and Information Systems, vol-
ume 6295 of LNCS, pages 392—405. Springer, 2010.

[6] S. Suri. A Linear Time Algorithm for Minimum Link
Paths Inside a Simple Polygon. Computer Vision,
Graphics, and Image Processing, 35(1):99-110, 1986.

[7] C. A. Wang. Finding Minimal Nested Polygons. BIT
Numerical Mathematics, 31(2):230-236, 1991.

	Introduction
	A Practical Minimum-Link Path Algorithm
	Heuristics for the General Case
	Evaluation

