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Robustness of Zero Sets: Implementation
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Abstract

Robustness of zero of a continuous map f : X → Rn
is the maximal r > 0 such that each g : X → Rn with
‖f − g‖∞ ≤ r has a zero. We develop and implement
an efficient algorithm approximating the robustness
of zero and present computational experiments.

The main ingredient is an algorithm for deciding
the topological extension problem based on comput-
ing cohomological obstructions to extendability and
their robustness.

1 Introduction

Statement of the result. We describe an algorithm
for detecting zeros of vector valued functions f : X →
Rn on a compact space X and for approximating the
robustness of zero, that is, a maximal number r > 0
such that every continuous g : X → Rn satisfying
‖g − f‖ ≤ r has a zero. By ‖f‖ we denote the max
norm of f , that is, maxx∈X |f(x)| where | · | is a fixed
`p norm in Rn. Nontrivial cases happen if dimX ≥ n,
as otherwise arbitrarily small perturbations of f avoid
zero.

For computer representation we assume that the
space X is a simplicial complex. Then the map
f : X → Rn is specified by its values on the vertices
and by a value α > 0 such that |f(x)− f(y)| ≤ α for
arbitrary points x and y of any simplex of X. In an
alternative setting we might assume that the function
f is simplexwise linear,1 but we preferred to empha-
size that the precise knowledge of f is not needed (at
the cost of slightly worse approximation guarantees).

The main motivation for the theoretical part of this
paper was to give a rigorous analysis of an implemen-
tation that is tailored for real instances. We perceive
the contribution of this paper as follows.

• Feasibility. Our algorithm is designed to avoid
any time-costly numerical computations. Unlike
the algorithm of [3], we need neither barycentric
subdivisions nor convex optimization.
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1That is, on every simplex it linearly interpolates the values

on the vertices. Such functions defined on sufficiently fine sub-
division of X can approximate any continuous map X → Rn

arbitrarily well.

• Persistent cohomology computations over inte-
gers. As an auxiliary tool, we need to extract
certain information from a persistent module
H∗(X0;Z) → H∗(X1;Z) → . . . with integral co-
efficients. To that end, we adapted the Chen’s
and Kerber’s matrix reduction algorithm “with a
twist” [2].

• Implementation. Our implementation is available
online2 and several computational experiments
are presented in our preprint [4].

Methods and the outline of the algorithm. The
main tools come from the field of computational ho-
motopy theory. In [3] we showed that any function
f : X → Rn on a compact domain X, has an r-robust
zero if and only if the map

f |A(r) :A(r)→ Rn \ {0} where

A(r) := {x ∈ X : |f(x)| ≥ r}
(1)

cannot be extended to a map X → Rn \ {0}. Af-
ter replacing f by the map x 7→ f(x)/|f(x)|, we can
equivalently replace Rn \{0} by Sn−1. This extension
problem is the core of our algorithm for approximat-
ing robustness, outlined as follows.

A. First, we discretize the continuous input, that
is, convert the spaces A(r) into simplicial com-
plexes Ar. Unlike in [3], we do not aim at hav-
ing homotopy equivalence A(r) ' Ar which re-
quires additional subdivisions and thus increases
the computing time heavily. For obtaining ap-
proximate results it is sufficient to have a rela-
tion of the form A(r − α) ⊇ Ar ⊇ A(r + α) for
some reasonably small α. Such a relation can
be achieved without introducing additional sub-
divisions while using the simplexwise Lipschitz
property of f .

We also identify some smallest value r0 such that
the restriction of f to Ar0 can be easily dis-
cretized. A simple combinatorial procedure finds
a simplicial map f ′ from Ar0 to the sphere such
that f ′ is homotopic to f as map from Ar0 to the
(n− 1)-sphere.

B. In the second step, we do pure computational
homotopy theory. Namely, for a previously ob-
tained sequence of simplicial complexes X ⊇

2www.cs.cas.cz/~franek/rob-sat

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



32nd European Workshop on Computational Geometry, 2016

A0 ⊇ A1 ⊇ . . . ⊇ Ah = ∅ and a simplicial
sphere-valued map f ′ we ask for robustness of
non-extendability of f ′ defined as follows.

Definition 1 Let X ⊇ A0 ⊇ A1 ⊇ . . . be a fil-
tration and f ′ : A0 → Sn−1 a sphere-valued map
that cannot be extended to all of X. The robust-
ness of non-extendability of f ′ from (Ai)i≥0 to X
is the smallest index i such that f ′|Ai

cannot be
extended to the whole of X.

2 Discretizing the geometry of the zero sets of
perturbations

Definition 2 A continuous filtration of spaces is a
family (Ar)r∈R such that Ar ⊇ As whenever r ≤ s.

A continuous filtration (Ar)r∈R is called step-like
whenever there exists a sequence of numbers −∞ =:
r−1 < r0 ≤ r1 ≤ r2 ≤ . . . ≤ rk such that for any
r, s ∈ (ri, ri+1] holds Ar = As for all i.

Note that any such step-like continuous filtration
is determined by the sequence of reals (ri)i and the
filtration A0 ⊇ A1 ⊇ . . . ⊇ Ak where each Ai denotes
Ari .

Definition 3 Continuous filtrations (Ar)r and (Br)r
are called α-interleaved whenever Br+α ⊆ Ar and
Ar+α ⊆ Br for each r ∈ R.

Definition 4 Let f : X → Rn be a continuous map
on a simplicial complex X and let | · | be a norm on
Rn.

1. Then by Ar we denote the subcomplex of X
spanned by the vertices v of X with |f(v)| ≥ r.

2. By A(r) we denote the subspace of X defined by
A(r) = {x ∈ X : |f(x)| ≥ r}.

3. We say that f is simplexwise α-Lipschitz when-
ever |f(x) − f(y)| ≤ α for each pair of points
x, y ∈ ∆ of any simplex ∆ ∈ X.

Spaces Ar form a step-like filtration where the steps
occur for each r equal to |f(v)| for some vertex v of X.

We will represent the sphere Sn−1 via a simplicial
complex Σn−1, the boundary of the n-dimensional
cros-polytope. Denoting e1, . . . , en the canonical basis
vectors of Rn, simplices of Σn−1 are all those subsets
of {±ei | i = 1, . . . , n} that do not contain a pair of
antipodal vectors {ei,−ei}.

Theorem 1 Let f : X → Rn be a simplexwise α-
Lipschitz map for some constant α > 0. Then the
following holds:

1. The continuous filtrations (Ar)r∈R and A(r)r∈R
are α-interleaved.

2. For any `p norm once r > αn1/p/2, the mapping
of vertices

f ′ : V (Ar)→ V (Σn−1)

v 7→ sgn
(
f(v)i∗

)
ei∗

where i∗ = argmax
i=1,...,n

∣∣f(v)i
∣∣ (2)

defines a simplicial map f ′ : Ar → Σn−1 (that is,
it maps simplices to simplices).

Moreover, f ′ : Ar → Σn−1 ⊆ Rn \ {0} is homo-
topic to f |Ar : A→ Rn \ {0} once r > αn1/p.

The simplicial map f ′ : A → Σn−1 as above will be
called the simplicial approximation of f |A.

3 The algorithm using an oracle for robustness of
non-extendability.

Now it is convenient to state the algorithm for ap-
proximating robustness of zero, given an oracle for
computing or bounding from below the robustness of
non-extendability.

A. (a) Label the set of real values {|f(v)| : v ∈
V (X) such that |f(v)| ≥ αn1/p} by
{r0, r1, . . . , rh} for some integer h ≥ 0.

(b) For any simplex ∆ ∈ X compute its filtra-
tion value r(∆) by

r(∆) := min
v vertex of ∆

|f(v)|.

This yields a filtration A0 = Ar0 ⊇ . . . ⊇
Ah = Arh that together with the values
r0, . . . , rh determines the step-like continu-
ous filtration (Ar)r∈R from Definition 4.

(c) For vertices v of X with |f(v)| ≥ r0 compute
f ′(v) defined by (2).

B. Use oracle to compute or bound from below
the robustness i∗ of non-extendability of f ′ from
(Ai)i≥0 to X.

(a) Once i∗ ≥ j and j > 0, output “robustness
of zero is at least rj − α.”

(b) Once also i∗ ≤ j, output “robustness of zero
is at most rj + α.”

Using the fact that the nonextendability of (1) is
equivalent to the existence of an r-robust zero com-
bined with Theorem 1, we can easily prove that the
above algorithm outputs a correct statement.

4 Robustness of obstructions to extendability.

Here we review the basic facts from obstruction the-
ory. X(k) will always refer to the k-skeleton of X,
the sub-complex spanned by simplices of dimension
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≤ k. Any map f : A→ Sn−1 can be extended to A∪
X(n−1) → Sn−1 by the connectivity of the sphere. At
some point of our extension process we need to work
on the level of cocycles. Also our implementation
operates fully on the level of cochains and cocycles,
hence we stick to that point of view for most of the
exposition as well. Let z ∈ Zn−1(Σn−1,Z) be a fixed
representative of the generator of Hn−1(Σn−1;Z). We
will use the following facts:

Proposition 2 Let f : A→ Σn−1 be simplicial, X ⊇
A, and y := f ](z) ∈ Zn−1(A;Z). Then the following
holds:

1. Any map h : A ∪ X(n−1) → Σn−1 extendable to
X(n) such that h|A = f can be described up to
a homotopy stationary on A by a cocycle x ∈
Zn−1(X;Z) such that x|A = y. If n ≤ 2, then
any map A ∪X(n) → Σn−1 extends to all of X.

2. If n ≥ 3, for any x ∈ Zn−1(X;Z) such that x|A =
y we have that x ^n−3 x vanishes3 on A, that
is, it is element of Zn+1(X,A;Z2) (or element
of Z4(X,A;Z) for n = 3) and it is a relative
coboundary if and only if the corresponding map
h can be extended to a map X(n+1) → Σn−1.

We will use the notation Ω := {x ∈
Zn−1(X;Z) : x|A = y} further below. Test 1. above
(corresponding to the primary obstruction) directly
translates to an algorithm and the second one (the
secondary obstruction) does so as well once n > 3.
(We also explain what the notions of the primary and
secondary obstructions mean exactly below.)

1. The set Ω corresponds to solutions of a linear
equation over integers. To see that, let ȳ ∈
Cn−1(X;Z) be an arbitrary cochain such that
ȳ|A = y. We have that

Ω = {ȳ−c : c ∈ Cn−1(X,A;Z) such that δc = δȳ}.
(3)

Thus the extendability of f to X(n) → Σn−1 is
equivalent to solvability of the linear equation
δc = δȳ with the unknown c ∈ Cn−1(X,A;Z).

2. Once Ω is nonempty, we fix x ∈ Ω. From (3) it
follows that there is a bijection Zn−1(X,A;Z)→
Ω given by w 7→ x−w. Thus the extendability of
f to a map X(n+1) → Σn−1 is equivalent to the
existence of w ∈ Zn−1(X,A;Z) such that

[(x− w) ^n−3 (x− w)] =

= [x ^n−3 x]− [w ^n−3 w] =

= 0 ∈ Hn+1(X,A;Z2).

3By x ^n−3 x we denote a cocycle representant of the
Steenrod square Sq2[x].

We use that the map w 7→ w ^n−3 w induces
a homomorphism on the level of cohomology for
n > 3, therefore the question reduces to a system
of linear equations again. This formulation shows
that the coset

[x ^n−3 x] + Sq2
(
Hn−1(X,A;Z)

)︸ ︷︷ ︸
{[w^n−3w] : w∈Zn−1(X,A;Z)}

ofHn+1(X,A;Z2)—called the secondary obstruc-
tion—captures the lack of extendability to the
(n + 1)st skeleton X(n+1). In the case n = 3
the extendability condition is [(x − w) ^ (x −
w)] = 0 ∈ H4(X,A;Z) for some w which is
computationally equivalent to solving systems
of quadratic Diophantine equations—an unde-
cidable problem [5]. In many instances, the
quadratic equations are simple if not trivial and
very simple heuristics suffice to solve them.

Robustness of the primary and secondary ob-
struction. In the persistent setting the input con-
tains, in addition to above, a sequence of spaces A0 =
A,A1, . . . , Ah and we want to compute a lower-bound
on the robustness of non-extendability—a value k
such that f |Ak

cannot be extended to X for as large
k as possible.

The key concept that allows an easy modification of
the obstruction tests into the persistent setting is the
functoriality of cohomology. For instance, the cochain
extension ȳ of f ](z) is an extension of f ]|Ai

(z) for each
Ai ⊆ A. The same holds for the cocycle extension x.

We state the algorithm Primary–Secondary
Persistence for lower-bounding the robustness of
non-extendability on a high-level fashion that empha-
sizes what the algorithm does rather that how it is
done. The low level implementation is explained in
the preprint [4].

0. Compute y := f ](z) ∈ Zn−1(A0;Z). Fix an arbi-
trary extension ȳ ∈ Cn−1(X;Z) of y.

1. Find the smallest j ≥ 0 such that there is c ∈
Cn−1(X,Aj ;Z) such that δc = δȳ. If n = 1, 2
output j. Otherwise let x := ȳ − c.

2. Find the smallest k ≥ j such that there is b ∈
Cn(X,Ak;Z2) and w ∈ Zn−1(X,Ak;Z) such that
δb+ w ^n−3 w = x ^n−3 x. Output k.

Step 0 amounts to using the definition of the in-
duced map in simplicial cohomology: namely, f ](z) is
defined to evaluate to 1 on the simplices [v1, . . . , vn]
such that [f(v1), . . . , f(vn)] = [e1, . . . , en] and to eval-
uate to 0 once {f(v1), . . . , f(vn)} 6= {e1, . . . , en}.

Step 1 and 2 are more involved and are reduced to
matrix reductions over integers similar to those used
in persistent homology computations over fields.



32nd European Workshop on Computational Geometry, 2016

5 Experimental results with random fields.

One of our goals is to analyze how much “typical” is a
situation in which the secondary obstruction or higher
obstructions play a role. The lowest-dimensional case
where nontrivial secondary obstruction can occur is
(m,n) = (4, 3). We generated random continuous
functions f : [−1, 1]4 → R3 taken from different prob-
ability distributions and looked for possible nontrivial
secondary obstructions. However, while the primary
obstruction typically occurs whenever f contains a
zero, we couldn’t detect a single instance of a ran-
domly generated function with nontrivial higher ob-
struction. Still, we don’t dare to conclude that higher
obstructions are untypical or unnatural, and think
that more research is needed.4 A short description
of our first experiments follows.

First we considered random functions generated
as Gaussian random fields. Each component fi(x)
of f(x) was generated so that for any finite set of
points {x1, . . . , xk} the random vector {fi(xj) : j =
1, . . . , k} has a multivariate normal distribution with
mean zero and the covariance between fi(x) and fi(y)
was taken to be

C(x, y) = exp(−|x− y|
2

2l2
)

for suitable l > 0. We generated function values using
l = 1/2, sampled from a grid g4 = 284 ⊆ [−1, 1]4 with
the three components of f generated independently.

For each trial, we first computed the minimal r0 for
which f ′|A�

r0
is simplicial.5 From a sample of 1218

functions, the average value of the minimal simpli-
cial r0 was 0.46. This value could be made smaller
by refining the grid: however, in all cases, there was
a nontrivial primary obstruction which persisted up
to r1 > r0 whose value was in average 1.06. In all
but three cases, there was no potential for a non-
trivial secondary obstruction, because the cohomol-
ogy group H4(X,A�

r1) was trivial. It was nontrivial
in three cases, giving some hope for a nontrivial sec-
ondary obstruction, but there was no secondary ob-
struction in these cases either.6

One possible explanation for the lack of secondary
obstruction is that the cohomology in dimension 4
has typically lower robustness than in dimension 3
and most generators have already died when the pri-
mary obstruction (element of H3) dies. A similar

4While we were not able to detect higher obstructions in
random fields, they occur in relatively simple examples with
component-wise quadratic functions.

5In our implementation, we work with a triangulation A�
r

of the cubical complex that consists of all cubes c such that
|f(x)| ≥ r for all vertices of c, rather than with Ar defined
above.

6We assume that in these three cases, nontriviality of
H4(X,A�

r ) was induced by a local positive minimum of |f |
in the interior of the domain, rather then by a neighborhood of
zero set.

phenomenon occurs in persistent homology of excur-
sion sets of random scalar fields, where the persistence
barcodes in dimension 0 die before the barcodes in di-
mension 1, compare [1]. The lack of top dimensional
cohomology reflects the fact that most components
of the zero set intersect the boundary of the domain:
it will be a matter of future work to perform simi-
lar computations for functions defined on manifolds
without boundary.

We also tried to detect higher obstructions in the
vector fields f(x) − f(0) where f was generated as
above and 0 is the midpoint of the [−1, 1]4 cube, with
the hope of isolating the zero set farther from the
boundary. The top cohomology was indeed richer, but
no secondary obstruction was detected either. We also
tried to use other covariance functions but the results
were similar.

Our last attempt to detect secondary obstruction
in random fields was to generate random homogenous
quadratic polynomials. The coefficients akij in fk(x) =∑
i,j a

k
i,jxixj were generated as independent samples

from a standard normal distribution.7 The zero set
of homogenous quadratic functions is either the origin
alone or a cone intersecting the boundary ∂[−1, 1]4:
only the first case can yield a nontrivial H4(X,A�

r )
and a nontrivial secondary obstruction. We generated
around 70 thousand instances of random quadratic
functions on a 104 grid: around 2.2% of them had only
the origin as the zero set, but there was no nontrivial
secondary obstruction in a single instance.
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