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Computing the Fréchet Distance between Real-Valued Surfaces
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1 Introduction

The problem of measuring the similarity between
shapes has recently gained much attention. While
many measures have been defined, algorithms to com-
pute such measures have been found for only some of
them. We consider the problem of comparing real-
valued functions f : M → R on surfaces, focusing in
particular on spheres and disks of constant bound-
ary, i.e., f(x) = f(x′) for all x, x′ ∈ ∂M . The kind
of similarity we investigate is that under continuous
deformations of surfaces, such as in Figure 1. Here
shapes that can be deformed into each other have dis-
tance 0, otherwise, shapes have some meaningful pos-
itive distance. Two natural computational problems
arise for each measure, namely deciding whether two
images have distance 0, and the more general problem
of computing the distance between two images.

Figure 1: Pictures that can deform into each other.

Major applications of computing such measures are
in the comparison of medical imagery. For example,
when comparing two MRI or CT scans of lungs, the
images are often not aligned due to breathing and
gravity. It is important to align the images through
deformation to locate differences.

Definitions, background and results. Given two
functions f : M → Rk and g : M → Rk with common
parameter space M , their Fréchet distance is defined
by Equation 1, where µ : M →M ranges over orienta-
tion preserving homeomorphisms and d(·, ·) is the un-
derlying norm of Rk. Essentially, the Fréchet distance
captures the similarity between two functions by re-
aligning their parameter spaces to minimize the max-
imum difference in function value of aligned points.
We assume that f and g are piecewise-linear.

dF (f, g) = inf
µ : M→M

sup
x∈M

d(f(x), g ◦ µ(x)). (1)
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Efficient algorithms for computing dF (f, g) exist
for Lp norms if f and g are polylines [3], so if M =
[0, 1] or M = S1 for closed polylines. The computa-
tional complexity in the case that f and g : M →
Rk are (triangulated) surfaces is much less under-
stood. The problem is known to be NP-hard [7] also
when k = 2 [4, 5]. But it is not known whether it is
actually in NP, in fact it is only known to be upper
semi-computable for surfaces in Rk [2].

We show that the problem is in NP for k = 1 if M
is a topological sphere or disk with constant bound-
ary. Additionally, we show that even for k = 1, com-
puting a factor 2 − ε approximation of the Fréchet
distance is NP-hard. We achieve our results on sur-
faces (Section 3) by first defining a suitable similarity
measure between contour trees, which we show to be
NP-complete to approximate as well (Section 2).

In previous work, a few variants on the compari-
son of surfaces under the Fréchet distance have been
investigated. For instance, there are efficient algo-
rithms for computing the Fréchet distance with cer-
tain constraints on the homeomorphisms µ [5] and for
computing the weak Fréchet distance [2] between tri-
angulated surfaces homeomorphic to the disk.

2 Contour tree distance

The Reeb graph [8] of a function f : M → R is
the quotient space M/∼f (endowed with the quo-
tient topology) where a ∼f b if and only if a and b
are in the same connected component of the level
set f−1(f(a)). Denote by Rf the corresponding quo-
tient map. Because f associates a single real number
to each equivalence class of ∼f , the resulting Reeb
graph has a natural R-valued function associated with
it, namely the (unique) function f ′ : M/∼f → R sat-
isfying f ′ ◦ Rf = f . If M is the disk or the 2-sphere,
the Reeb graph forms a tree called a contour tree.

For the sake of compact representation, in this pa-
per we assume each surface to be triangulated to form
a simplicial 2-complex. Furthermore, we assume func-
tion values along edges of Reeb graphs to be linearly
interpolated between the values of the vertices at their
endpoints. In this representation, the contour tree of
a surface with n faces has complexity O(n) and can
be computed in O(n log n) time [11].

Based on the Fréchet distance between f and g, we
derive a computationally simpler measure that ab-
stracts from the realizability of the matching µ be-

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



32nd European Workshop on Computational Geometry, 2016

tween spheres or disks. Throughout this paper, we
use the notation X = M/∼f and Y = M/∼g for the
contour trees of f and g, respectively. We shall de-
note the vertex set of X by V (X) (that is, the saddle
points and minima and maxima of f) and its edge
set by E(X). With slight abuse of notation, we reuse
function names f and g for the natural R-valued func-
tions associated with the contour trees X and Y. Our
distance measure dC compares the contour trees X
and Y of f and g. We define the contour tree dis-
tance dC between f : X→ R and g : Y→ R as

dC (f, g) = inf
τ∈M(X,Y)

sup
(x,y)∈τ

|f(x)− g(y)|,

where τ ⊆ X × Y is drawn from a specific class
of matchings M(X,Y), defined below. So τ de-
fines a correspondence between contour trees, such
that (x, y) ∈ τ if some points on contours x and y
are matched by a corresponding matching µ on M .
Denote τ(x) = {y | (x, y) ∈ τ} and τ−1(y) = {x |
(x, y) ∈ τ}. The classM(X,Y) captures the essential
(but not all) properties of an orientation preserving
matching µ. We define M(X,Y) as the set of match-
ings τ for which the following properties hold:

1. τ is a connected subset of X× Y;

2. τ(x) is a nonempty subtree of Y for each x : X;

3. τ−1(y) is a nonempty subtree of X for each y : Y.
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Figure 2: Two trees
(left) and a matching.

Here, the term subtree is
used to denote a connected
subset of a tree, not nec-
essarily containing leaves of
that tree. By Conditions 2
and 3, each connected set
matches with a connected
set, and Condition 1 ensures
continuity.
Figure 2 shows an example
of a matching between trees.
The two-dimensional patch
of this matching represents

a many-to-many correspondence. For a match-
ing µ : M →M between surfaces f and g, define T (µ)
to be the corresponding matching between the Reeb
graphs of f and g:

T (µ) = {(Rf (x),Rg ◦ µ(x)) | x ∈M} (2)

Lemma 1 If µ : M → M is orientation preserving
and τ = T (µ), then τ ∈M(X,Y).

Proof. Consider such a matching µ and the corre-
spondence τ between X and Y. We show all three
conditions on τ hold. The set {(x, y) | µ(x) = y}
is a connected subset of S2 × S2, and hence its im-
age under the quotient map (x, y) 7→ (Rf (x),Rg(y))

is connected, so Condition 1 holds. Because µ pre-
serves orientation, τ(x) is connected, and by surjectiv-
ity nonempty. Hence, τ(x) and symmetrically τ−1(y)
is a nonempty subtree of Y and X, respectively. �

Corollary 2 dC (f, g) ≤ dF (f, g).

Lemma 3 Computing dC (f, g) is in NP.

By Lemma 1 we have for each orientation preserv-
ing homeomorphism µ, that the matching τ = T (µ)
satisfies τ ∈ M(X,Y). Hence, dC (f, g) ≤ dF (f, g).
On the other hand, a matching τ ∈ M(X,Y) does
not need to correspond to an orientation preserving
homeomorphism on M , as illustrated in Section 3.1.

To test whether the contour tree distance between
two trees is zero, one needs to test only whether the
trees are equal. We represent trees canonically by ex-
haustively removing degree 2 vertices that lie on the
segment connecting the two adjacent vertices, and re-
placing them by a single edge between those vertices.
This reduces the problem to labeled unordered un-
rooted tree isomorphism, solvable in linear time [1].

Computing the contour tree distance and Fréchet
distance between trees are different problems. In fact,
one major limitation of the Fréchet distance for trees
is that non-homeomorphic trees have infinite Fréchet
distance. Nonetheless, algorithms for computing the
Fréchet distance between trees have been investigated
before, yielding an O(n5/2) time algorithm [4].

2.1 NP-hardness

We show that approximating the contour tree distance
between R-valued trees within factor 2 is NP-hard
by a reduction from the NP-hard problem Exact
Cover by 3-sets [6].

Definition 1 Exact Cover by 3-sets (X3C)
Input: A set S of m subsets of {1, . . . , k} of size 3.
Output: Is there a subset of S consisting of k/3 dis-
joint triples whose union is {1, . . . , k}?
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Figure 3: Gadgets.

We introduce the gadgets
used in our reduction in Fig-
ure 3. Gadget Y ∗ is a long
segment from position 0 to
position 6k + 6. Gadget Yl
(l ∈ {1, . . . , k}) is a path from
position 1 to 6k+6 with a sin-
gle zig-zag of radius 2 around
position 6l. Similarly, gad-
get Xi,j (i ∈ {1, . . . ,m}, j ∈
{1, 2, 3}) has a single zig-zag
around position 6 · s(i, j), but
with radius 1. The function s
aligns the center of the zig-zag of Xi,j with that
of Ys(i,j), such that gadget Xi,j has a contour tree
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distance of 1 to Y ∗ and Ys(i,j), but a contour tree
distance of 2 to any gadget Yl with l 6= s(i, j).
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Figure 4: Connecting gadgets into trees f and g.

The function s can be configured such that each triple
of gadgets (Xi,1, Xi,2, Xi,3) corresponds to one of
the m subsets of S. We connect the three elements
of each triple at a common vertex at position 1, and
finally connect all triples at a common vertex at po-
sition 2 (blue in Figure 4) to form tree f : X→ R.

Similarly, all gadgets Yl correspond to an element
of {1, . . . , k}, and all Yl are connected to a common
vertex at position 1. To obtain a low contour tree dis-
tance, k/3 triples of f must match the Yl gadgets ex-
actly; then what remains in f are m−k/3 triples that
must be matched elsewhere. Each such unmatched
triple of f is then forced to match with three copies
of Y ∗, connected at a vertex at position 0 to form a
so called Y ∗-triple. We use m − k/3 such Y ∗-triples,
each connected to the Yl gadgets at position 1 to form
tree g : Y → R. We use a solution to X3C to derive
a matching using only many-to-one correspondences
between f and g, even though M(X,Y) also permits
many-to-many correspondences. In the full paper we
also show that any many-to-one matching can be real-
ized as an orientation preserving homeomorphism on
the sphere, such that computing the Fréchet distance
between R-valued spheres is NP-hard, see Theorem 5.

Theorem 4 Computing a (2 − ε)-approximation of
the contour tree distance is NP-complete.

Theorem 5 Computing a (2 − ε)-approximation of
the Fréchet distance of R-valued spheres is NP-hard.

3 Surfaces

We consider two surfaces: the disk M = [0, 1]2 and
the sphere S2. Not all matchings between the contour
trees X and Y can be realized as orientation preserv-
ing homeomorphisms on the sphere as illustrated in
Section 3.1. In the case of the disk, the boundaries
must also be matched, which imposes additional con-
straints on the matching of the interiors. We prove
that the Fréchet distance between R-valued spheres or
disks with constant boundary is in NP in Section 3.2.
For this we use properties of Euler diagrams.

3.1 An unrepresentable matching

Consider the two rooted trees X and Y of Figure 5.
The leaves of X are labeled xi,j (i ∈ {1, . . . , 6},
j ∈ {1, 2, 3}) and the leaves of Y are labeled yk,l
(k ∈ {1, . . . , 9}, l ∈ {1, 2}). For both trees, leaves with
the same i or k are grouped in subtrees. Based on the
complete bipartite graph K3,3 with vertices v1, . . . , v6
and edges e1, . . . , e9, we construct a matching τ be-
tween those subtrees as follows. For an edge ek =
(vi, vi′) of K3,3, match the path from yk,1 to yk,2
with the path between unused vertices xi,j and xi′,j′ .
Match the edge from the root to group i of X with
the edges of Y from the root to the three groups
that match with xi,1, xi,2 and xi,3. Then τ ∈
M(X,Y) does not match any path from yk,1 to yk,2
(of edge ek = (vi, vi′)) with any group of X not con-
taining any xi,j or xi′,j′ . However, because K3,3 is
not a planar graph, this matching cannot be realized
on the sphere, as illustrated in Figure 5.

x1,1 x6,3. . . y1,1 y9,2. . .

Figure 5: Top: surfaces. Bottom: trees X and Y.
Middle: a matching in which a subtree of Y must
intersect an additional subtree of X.

3.2 Fréchet distance in NP

An Euler diagram is a set of topological disks, drawn
in the plane to capture relations such as overlap or
containment between them. There are eight such rela-
tions: disjoint, equal, inside, contains, covered, cover,
meet, overlap [10]. For a set D of n disks and a rela-
tion P(a, b) between each pair a, b ∈ D of those disks,
the tuple (D,P) is called a topological expression. It
was shown by Schaefer, Sedgwick and Štefankovič [9]
that it is in NP to decide whether D can be drawn in
the plane to satisfy all relations of P.

We show that deciding whether the Fréchet dis-
tance between R-valued surfaces f and g : M → R
is at most ε is in NP if M is a sphere. First con-
sider the case where M = [0, 1]2 is a topological disk
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where f and g have constant boundary: f(p) = f(q)
and g(p) = g(q) for all p, q ∈ ∂M .

We can represent the contour trees X and Y as
rooted trees, and represent each subtree as a disk.
A vertex is represented by a disk with punctures (one
per edge to a subtree), and an edge e is represented by
two nested disks, whose difference is an annulus A(e).
Let W (·) denote the disks of a tree.

d

Figure 6: X′ (green)
refining X (blue) for
a single d ∈W (Y).

Define matching µ : M → M
to be an ε-matching if and
only if |f(x) − g(µ(x))| ≤ ε
for all x. Consider any ε-
matching µ between X and Y.
A polynomial amount of in-
formation about µ is used to
derive a topological expression
that captures the relations be-
tween the disks (of X and Y)
as drawn by µ. We construct
trees X′ and Y′ that have ad-

ditional vertices along the edges. We include for
each disk d of X the extremes p on Y of the im-
age of the boundary of d as vertices of Y′. That is,
p ∈ ∂Rg(µ(∂d)) ⊆ V (Y′), and we require the bound-
ary of these disks to touch but not intersect ∂d. Sym-
metrically, refine X into X′ and let D be the disks
of W (X′) ⊇W (X), and W (Y′) ⊇W (Y), see Figure 6.

Consider any drawing of D that satisfies the con-
straints imposed by the topological expression derived
from µ. We claim that if µ was an ε-matching, we
can parameterize f and g such that they form an ε-
matching µ′. Where boundaries of disks of X′ and Y′
intersect, both function values are fixed and differ
by at most ε. Consider any face F in the draw-
ing

⋃
d∈D ∂d of the boundaries of disks. It is bounded

by (a subset of) boundaries of either a vertex or edge
of X′ and those of a vertex or edge of Y′. By con-
struction, F is either entirely contained in the image
of a vertex, or disk boundaries of different surfaces
intersect on ∂F . In the former case, function values
are fixed for ∂F and differ by at most ε. In the lat-
ter case, linearly interpolate the function values be-
tween those at intersections. The function value (of f
and g) on each boundary of F is then either constant,
or (only if F lies in the intersection of two annuli and
has genus 0) two linear interpolations (back and forth)
between the values at the boundary of an annulus.

If either function is constant along ∂F , assign the
same constant to the interior, such that the other
function can by interpolated arbitrarily. If neither
function is constant, F ⊆ A(e)∩A(e′) lies in the inter-
section of annuli (e ∈ E(X′) and e′ ∈ E(Y′)). If F is
homeomorphic to an annulus, we interpolate f and g
in its interior linearly between the boundaries. In the
final case where both f and g are interpolated along
the boundary of F , we separate the regions where the
interpolation of f occurs from that of g, such that the

function values at any point differ by at most ε.
Deciding whether the topological expression (con-

structed using a polynomial amount of information
about µ) has a realization in the plane is decidable
in nondeterministic polynomial time. For any ε-
matching µ, this topological expression has a solu-
tion, and each such solution encodes an ε-matching.
Theorems 6 and 7 follow.

Theorem 6 Deciding whether dF (f, g) ≤ ε for
disks f and g with constant boundary is in NP.

Theorem 7 Deciding whether dF (f, g) ≤ ε for
spheres f and g is in NP.
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