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Abstract

We investigate the problem of computing a minimum
volume container for the non-overlapping packing of
a given set of three-dimensional convex objects. Al-
ready the simplest versions of the problem are NP-
hard so that we cannot expect to find exact polyno-
mial time algorithms. We give constant ratio approx-
imation algorithms for packing axis-parallel (rectan-
gular) cuboids under translation into an axis-parallel
(rectangular) cuboid as container, for cuboids under
rigid motions into an axis-parallel cuboid or into an
arbitrary convex container, and for packing convex
polyhedra under rigid motions into an axis-parallel
cuboid or arbitrary convex container. This work gives
the first approximability results for the computation
of minimum volume containers for the objects de-
scribed.

1 Introduction

The problem of efficiently packing objects arises in
a large variety of contexts. Apart from the obvious
ones, like transportation or storage, there are more
abstract ones, for example cutting stock or schedul-
ing. Consequently, packing problems have been inves-
tigated in mathematics and operations research for a
long time (for a survey and references, see [1]).

In this work, we consider the problem of packing
three-dimensional convex polyhedra into a minimum-
volume container. All variants of this problem are
NP-hard. We will develop constant factor approxi-
mation algorithms for some of them. The worst case
constant factors are still very high, but probably they
will be much lower for realistic inputs. The major
aim of this paper, however, is to show the existence of
constant factors at all, i.e., that the problems belong
to the complexity class APX. For a complete version,
see [3].

Related Work. So far, there are only few results
about finding containers of minimum volume. Re-
lated problems include strip packing and bin packing.
In two-dimensional strip packing the width of a strip
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is given and the objects should be packed in order to
minimize the length of the strip used. In three di-
mensions, the rectangular cross section of the strip is
fixed. Bin-packing is the problem where the complete
container is fixed and the objective is to minimize the
number of containers to pack all objects.

Approximation algorithms have been developed for
two- and three-dimensional bin and strip packing (e.g.
[4, 5, 6, 7]). Approximation algorithms for mini-
mum area containers in two dimensions were given
by v.Niederhäusern [8] and Alt et al. [2].

The well-known NP-complete problem PARTI-
TION can be reduced to our problem showing NP-
hardness.

2 Preliminaries and Notation

For most algorithms considered here, the input is a set
of rectangular boxes B = {b1, b2, . . . bn}. We denote a
box bi in axis-parallel orientation by its height, width
and depth (hi, wi, di).

half
filled

Figure 1: Re-
sult of Alg. 1

We define:
hmax = max {hi | bi ∈ B},
wmax = max {wi | bi ∈ B}, and
dmax = max {di | bi ∈ B}.

Definition 1 (OMCOP) An
instance of orthogonal minimal
container packing (OMCOP) is
a set of convex polyhedra. The
aim is to pack these polyhedra
non-overlapping such that the
minimal axis-parallel container
has minimal volume Vopt. Vari-
ants include the kind of motions
allowed or that more specialized
objects are to be packed.

Algorithm 1 was first given in [8]. We describe it here
in detail since it will be used later as a subroutine.
For an example see Figure 1.

Observation 1 The resulting strip of Algorithm 1 is
half filled with rectangles up to the bottom edge of
the highest rectangle ri touching the upper end of the
packing. Otherwise, ri could have been placed lower.
Thus, the strip is half filled except for a part with area
at most w · hmax.
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Algorithm 1:

Input: List S of rectangles ri = (wi, hi), a width
for the strip w

1. Split S in sublists

Sj =
{
ri ∈ S | w

2j−1 ≥ wi > w
2j

}
for j ≥ 1.

2. Start with packing the rectangles in S1 on top of
each other in the strip [0, w]× [0,∞).
Split the remaining strip in two substrips with

width w
2 and pack the rectangles in S2 one after

another into these substrips. Each ri is packed in
the substrip with current minimal height.

3. Again split the substrips into two and pack S3.
Iterate that process until everything is packed.

3 Reduction from 3D-OMCOP to Strip Packing

In this section we consider the version of OMCOP
where the given objects are axis-parallel boxes that
are to be packed under translation. The idea of
the reduction of OMCOP to strip packing is to test
different base areas for the strip and to return the
result with minimal volume. The base area of an
optimal solution is a rectangle of width within the
interval

[
wmax,W∑] and depth within the interval[

dmax, D∑], where W∑ (D∑) denotes the sum of
width (depth) of all boxes to be packed. We subdivide
these intervals logarithmically depending on some pa-
rameter ε and call for all resulting width-depth-pairs
as base area a strip packing algorithm with the given
boxes. For a possible subdivision see Figure 2. With
a more detailed elaboration and analysis (see [3]) we
obtain the following theorem.

dmax

D∑

wmax W∑

Figure 2: Example for a subdivision. The tested base
areas have their lower left corner in common, candi-
dates for the upper right corner are the grid points.

Theorem 1 If we use an α-approximation algorithm
to pack the boxes under translation into the strips
with the base areas defined above, we obtain for
any fixed ε > 0 an (α+ ε)-approximation for the
OMCOP variant where n axis aligned boxes are
to be packed under translation. Its runtime is

O
(
T (n) log2 n

ε2

)
where T (n) is the runtime of the strip

packing algorithm.

If we use the algorithm given by Diedrich et al. [5]
which gives a 29

4 -approximation for three-dimensional
strip packing, we obtain the following corollary.

Corollary 2 There exists a (7.25 + ε)-approxima-
tion algorithm for packing axis-parallel boxes under
translation into a minimum volume axis-parallel box
with runtime polynomial in the input size and 1

ε .

4 Algorithms for Variants of OMCOP

In this section we will give algorithms for variants of
OMCOP. The basic idea is to get rid of the third
dimension by partitioning the set of objects into sets
of objects with similar height and then packing those
using an algorithm for two-dimensional boxes. These
containers then get cut into pieces with equal base
area. The pieces will be stacked on top of each other,
see Algorithm 2.

4.1 Cuboids under Translation

Although this algorithm gets outperformed by the
construction in the previous section, we state it here
as base for the algorithms for the other variants. For
an illustration of steps 3 to 5 see Figure 3.

Algorithm 2:

Input: Set of axis parallel boxes
B = {b1, . . . , bn}, α ∈ (0, 1), c > 1

1. Partition B into subsets of boxes that have
almost the same height:
Bj =

{
bi ∈ B | hmax · αj < hi ≤ hmax · αj−1

}

2. Use Algorithm 1 to pack every Bj into a strip
with width wmax and height hmax · αj−1 by
taking the base areas of the boxes as rectangles
and applying Algorithm 1 to them.

3. Divide the strips into pieces with depth
(c− 1) · dmax, ignoring the last part of the strip
of depth dmax. (Parts of boxes contained in this
part of the strip will be covered in step 4.)

4. Extend each piece to depth c · dmax such that
every box lies entirely in the piece its front lies in.

5. Stack the pieces on top of each other.

dmax

Figure 3: Cut strip and obtained pieces stacked.
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Theorem 3 For suitable values of c and α Algo-
rithm 2 computes a 11.542-approximation for the vari-
ant of OMCOP where n axis parallel cuboids are
packed under translation in O(n log n) time.

Proof. Let Dj denote the depth of the strip obtained
in step 2 for the boxes in Bj . Then we get by step 3

k =
⌈
Dj−dmax

(c−1)dmax

⌉
pieces. After step 4 each piece has

volume c · dmaxwmaxhmax (α)
j−1

. Then the total vol-
ume of the pieces obtained for the subset Bj is:

Vj =k · c · dmaxwmaxhmax (α)
j−1

<
c

c− 1
(Dj − dmax)wmaxhmax (α)

j−1

+ c · dmaxwmaxhmax (α)
j−1

.

We know from Algorithm 1 that the base area of the
strip is half filled with boxes except for the last part of
depth dmax (Observation 1), so (Dj − dmax)wmax ≤
2
∑
bi∈Bj

AB (bi) where AB (b) denotes the base area
of box b. Also, for every bi ∈ Bj the inequality

hmax (α)
j−1

< hi

α holds. Thus, we get for the total
volume of the packing V that

V ≤
∞∑

j=1

(
c

c− 1
(Dj − dmax)wmaxhmaxα

j−1

+ c · dmaxwmaxhmax · αj−1
)

≤
∞∑

j=1

(
2c

α (c− 1)

∑

bi∈Bj

V (bi)

+ c · wmaxdmaxhmax · αj−1
)

≤ 2c

α (c− 1)

∑

b∈B

V (b)

︸ ︷︷ ︸
≤Vopt

+ c · wmax · dmax · hmax︸ ︷︷ ︸
≤Vopt

·
∞∑

l=0

αl (1)

≤
(

2c

α (c− 1)
+

c

1− α

)
Vopt. (2)

The factor before Vopt in term (2) is minimized if the
partial derivatives with respect to c and α are 0. This
gives an approximation ratio of 3

3√2−1 ≈ 11.542. �

4.2 Cuboids under Rigid Motions

Now we consider the variant of OMCOP where the
objects to be packed are boxes and rigid motions are
allowed. We use the algorithm stated above but with
an extra preprocessing step, namely rotating every
box bi ∈ B such that it becomes axis parallel and
hi ≥ wi ≥ di. This can be done in O(n) time. To
prove the performance bound we need Lemma 4.

Lemma 4 If every bi ∈ B is oriented such that
hi ≥ wi ≥ di, then hmax · wmax · dmax ≤

√
6 · Vopt.

Proof. An optimal container has to contain the box
determining hmax, so it contains a line segment l1 of
length hmax. The projection of l1 on one of the axes
has a length of at least 1√

3
hmax. W.l.o.g. let this axis

be the x-axis. Thus, the optimal container has an ex-
pansion of at least 1√

3
hmax in x-direction. Since every

box is higher then wide, a box with width wmax con-
tains a disk D with diameter wmax and so the optimal
container does. D contains a diametric line segment
l2 which is parallel to the y-z-plane. The projection of
l2 and thus the one of the whole box on the y-axis or
on the z-axis has a length of at least 1√

2
wmax. W.l.o.g.

let this be the y-axis. A box with depth dmax contains
a sphere s with diameter dmax. The projection of s on
any axis, in particular the z-axis, has length at least
dmax. �

Observe that every argument leading to inequal-
ity (1) still holds for this variant of the algorithm.
Using Lemma 4 to estimate hmax ·wmax · dmax we get

an approximation factor of 2c
α(c−1) + c·

√
6

1−α . Minimizing

this expression as before yields:

Theorem 5 The given algorithm computes a 17.738-
approximation for the variant of 3D OMCOP where
n axis parallel cuboids are packed under rigid motions
in O(n log n) time.

Convex Container. If we allow a convex container
instead of an orthogonal container, we can use the
same algorithm but adapt the analysis. The argu-
ments leading to inequality (1) still hold since they
only use the total volume of the boxes as estimate for
the volume of an optimal container. But we can only
show hmax · wmax · dmax ≤ 6 · Vopt, so we get with a
detailed analysis the following theorem.

Theorem 6 Using the algorithm described in sec-
tion 4.2 we get a 29.135-approximation for packing n
axis parallel boxes under rigid motions into a smallest-
volume convex container in time O(n log n).

4.3 Convex Polyhedra under Rigid Motions

We use the algorithm from section 4.2 to pack convex
polyhedra under rigid motions into an axis-parallel
minimal volume box. To do so, we add another pre-
processing step where we compute an enclosing box
for every polyhedron. We then pack these boxes with
the algorithm discussed in section 4.2. For a convex
polyhedron p the enclosing box is built as follows: Let
B and T be two points of p with largest distance h and
π a hyperplane normal to the line segment BT . Let
p′ be the orthogonal projection of p onto π, R′ and L′
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be two points of p′ with largest distance w, and R and
L its preimages. Let l be a line normal to R′L′, the
projection of p′ onto l a line segment of length d with
endpoints F ′′ and D′′, and F and D its perimages in
p. Then the enclosing box is Bp = (h,w, d). See Fig-
ure 4 for an example. Checking all pairs of vertices as
candidates for B and T , and R′ and L′, we get a total
running time of O

(
m2
)

for computing the bounding
boxes of polyhedra with m vertices in total. For the
analysis of this algorithm we need two lemmata that
follow.

T

L

R

B

F

D

D′

T ′

R′L′

F ′

Figure 4: Box with a point of the enclosed polyhedron
in every facet and the projection of the box on its base.

Lemma 7 Let b = (h,w, d) with h ≥ w ≥ d be the
enclosing box obtained for polyhedron p. Then, par-
allel to any given plane, p contains a line segment of
length at least w · 1√

5
.

This lemma can be proven by showing that either each
height in triangle (TBL) or triangle (TBR) is at least
w√
5
. The complete proof can be found in [3].

Lemma 8 Let b = (h,w, d) be the enclosing box ob-
tained for a polyhedron p. The projection of p onto
an arbitrary line g has length at least d

8
√
3
.

This Lemma is shown by an elaborate construction,
where we find four line segments inside p such that the
projection of at least one of them onto g has length at
least 1

8
√
3
d. The complete proof can be found in [3].

Just as in the proof of Lemma 4 any container, in
particular the optimal one, must contain a line seg-
ment of length hmax whose projection on one axis,
say the x-axis, has length at least hmax√

3
. Applying

Lemma 7 to the y-z-plane and the polyhedron defin-
ing wmax gives a line segment of length at least wmax√

5

whose projection onto at least one axis, say the y-axis,
has length at least wmax√

10
. By Lemma 8, the projection

of the polyhedron defining dmax onto the z-axis has
length at least dmax

8
√
3

. Summarizing, we obtain that

Vopt ≥ 1
24
√
10
hmax · wmax · dmax. Using this in-

equality and the fact that the volume of each enclos-
ing box is at most 6 times the volume of the enclosed

polyhedron, we derive the following approximation ra-

tio from inequality (1): 12c
α(c−1) + c·24

√
10

1−α . We get by
minimization:

Theorem 9 The given algorithm computes a 277.59-
approximation for the variant of OMCOP where n
convex polyhedra having m vertices in total are to be
packed under rigid motions in time O

(
m2 + n log n

)
.

Convex Container. We use the the result of the
algorithm given in Section 4.3 to compute an ap-
proximation for a minimum volume arbitrary con-
vex container. The approximation ratio becomes
a different expression since we can only show
hmax · wmax · dmax ≤ 24

√
60Vopt. A detailed analysis

yields the following theorem.

Theorem 10 The algorithm given in section 4.3
computes a convex container with volume at most
511.37 times the volume of an optimal convex
container for packing n convex polyhedra having
m vertices in total under rigid motions in time
O
(
m2 + n log n

)
.
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