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Covering points with rotating polygons

Carlos Alegŕıa-Galicia ∗ David Orden † Leonidas Palios ‡ Carlos Seara § Jorge Urrutia ¶

Abstract

We study the problem of rotating a simple polygon
to contain the maximum number of elements from a
given point set. We consider variations of this prob-
lem where the rotation center is a given point or lies
on a line segment, a line, or a polygonal chain.

1 Introduction

Given a simple polygon P , the Polygon Placement
Problem consists in finding a function τ such that a
placement τ(P ) satisfies a certain property, for τ com-
bining certain allowed types of movements. The old-
est problem of this family we are aware of was studied
in the early eighties by Chazelle [5], who given two
polygons P and Q explored the problem of finding,
if it exists, a placement τ(P ) that contains Q using
translation and rotation.

The most recent contribution to these problems is
due to Barequet and Goryachev [3]. Among other re-
sults, for a point set S, a simple polygon P , and τ
a composition of translation and rotation, they show
how to compute a maximum cover placement for P ,
that is, a placement τ(P ) containing the maximum
number of points of S. For n and m being the sizes
of S and P respectively, their algorithm runs in
O(n3m3 log(nm)) time and O(nm) space.

Although translation-only problems have also being
considered [1], to the best of our knowledge there are
no previous results where τ is only a rotation1. In this

∗Posgrado en Ciencia e Ingenieŕıa de la Com-
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1Existing results where τ is a composition of either rota-
tion, translation, and scaling, reduce the search space complex-
ity by only considering placements where a constant number of
points from S lie on the boundary of P (see for example refer-

paper we thus study the following Maximum Cover
under Rotation (MCR) problems:

Problem 1 (Fixed MCR) Given a point r in the
plane, compute an angle θ ∈ [0, 2π) such that, after
counterclockwise rotating P by θ around r, the num-
ber of points of S contained in P is maximized.

Problem 2 (Segment Restricted MCR) Given
a line segment `, compute a point r on ` and an
angle θ ∈ [0, 2π) such that, after counterclockwise
rotating P by θ around r, the number of points of S
contained in P is maximized.

Applications of polygon placement problems in-
clude global localization of mobile robots, pattern
matching, and geometric tolerance (see the references
in [3]). Rotation-only versions arise in robot localiza-
tion using a rotating camera [7] or quality control of
objects manufactured around a vertical axis.

We show that Problem 1 is 3SUM-hard (an o(n2−ε)-
time solution for it implies an affirmative answer to
the open question of whether an o(n2−ε)-time algo-
rithm for 3SUM exists [6]) and present two algo-
rithms to solve it: one requiring O(nm log(nm)) time
and O(nm) space, the other taking O((n+ k) log n+
m logm) time and O(n + m + k) space, where k =
O(nm) is the number of events. We also describe an
algorithm that solves Problem 2 in O(n2m2 log(nm))
time and O(n2m2) space. This algorithm can be eas-
ily extended to solve variations of Problem 2 where r
lies on a line or a polygonal chain.

2 Fixed MCR (Problem 1)

Let cp be the circle with center r and radius |rp|,
where p is a point in S. If instead of rotating P coun-
terclockwise we rotate S in clockwise direction, cp
is the curve described by p during a 2π rotation
around r. The endpoints of the circular arcs resulting
from intersecting P and cp mark the rotation angles
where p enters (in-event) and leaves (out-event) the
polygon P . In the worst case, the number of such
events per element of S is O(m), for a total of O(nm)
if we consider all the points in S. See Figure 1.

ences [3] and [4] for algorithms based respectively, on two-point
and one-point placements). Rotation-only adaptations of these
results would not allow the rotation center to be fixed or re-
stricted to lie on a given curve and therefore, cannot be applied
to the problems we deal with in this paper.
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Figure 1: A comb-shaped simple polygon can generate
Ω(m) in- and out-events per point in S.

2.1 A 3SUM-Hard reduction

We show next that Problem 1 is 3SUM-hard by a
reduction from the Segments Containing Points prob-
lem that was proved to be 3SUM-hard by Barequet
and Har-Peled [2].

Problem 3 (Segments Containing Points)
Given a set A of n real numbers and a set B of
m = O(n) pairwise-disjoint intervals on the real line,
is there a real number u such that A+ u ⊆ B?

Theorem 1 Fixed MCR is 3SUM-hard2.

Proof. Let I be an interval of the real line that con-
tains the set A of points and the set B of intervals of
an instance of the Segments Containing Points prob-
lem. Wrap I on a circle C whose perimeter has length
at least twice the length of I. This effectively maps
the points in A and the intervals in B into a set A′ of
points and a set B′ of intervals on C.

Clearly, finding a translation (if it exists) of the el-
ements of A such that A + u ⊆ B, is equivalent to
finding a rotation of the set of points A′ such that
all of the elements of A′ are mapped to points con-
tained in the intervals of B′. To finish our reduction,
construct a polygon as shown in Figure 2.

(a)

(b)

Figure 2: Wrapping I from (a) the real line to (b) a
circle C. Intervals forming B and B′ are highlighted
with blue. Elements of A and A′ are represented by
white points. Additional vertices forming the polygon
are the intersection points between the tangents to C
at the endpoints of each interval in B′.

�
2The proof of this theorem is based on the proof of Theo-

rem 4 from Barequet and Har-Peled [2].

2.2 An O(nm log(nm)) algorithm.

By Theorem 1 it is unlikely that we could solve Prob-
lem 1 in less than quadratic time. We outline now our
best solution.

1. Intersect rotation circles. Compute the inter-
section points of cp and P , for every p in S.

2. Compute the sequence of events. Choose a
common reference and translate every intersection
point into a rotation angle in S1. Sort all the events
by increasing angular order into an event sequence,
and determine if they define in- or out-events (see Fig-
ure 3). Note that, for each element pj of S, we obtain
a sequence of sorted intervals Ij = {Ij,1, . . . , Ij,ij}
that determine the rotation angles for which pj be-
longs to P .

x
y

Figure 3: An in-event at x (left turn), and an out-event
at y (right turn).

3. Compute the angle of maximum coverage.
Using standard techniques, we can now perform a
sweep on the set obtained by joining all of the in-
tervals in I1 ∪ · · · ∪ In.

0 2π

p1

pn

`

...

pj

... Ij,1 Ij,ij· · ·

Figure 4: The events sequence and the sweeping line
at angle θ. Highlighted with a red circle, the intersec-
tion of line ` with an interval corresponding to p1 (p1 is
inside P ). Highlighted with a blue circle, the intersec-
tion of line ` with one of the endpoints of an interval
corresponding to pn (an in-event).

During the sweeping process, we keep a counter con-
taining the number of points of S in P . If an in-event
or an out-event occurs, the counter is increased or de-
creased by one, respectively. At the end of the sweep-
ing process, we report the angular interval(s) where
the count is maximized.

Since the complexity of our algorithm is dominated
by items 1 and 2, which take O(nm log(nm)) time:
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Theorem 2 The Fixed MCR problem can be solved
in O(nm log(nm)) time and O(nm) space.

2.3 A more efficient algorithm.

Performing a plane sweep using a circular sweepline
outwards from the rotation center r, it is possible to
intersect P and the set of rotation circles in a more
efficient way. The idea is to maintain a list of the
edges intersecting the sweepline, ordered by appear-
ance while the sweepline is traversed in clockwise di-
rection around r. Using the same technique shown in
Figure 3, the edges are labeled as defining in- or out-
events. The algorithm is outlined next.

1. Normalize P . In the following steps, we con-
sider P to have no edges intersecting a rotation circle
more than once. This can be guaranteed by perform-
ing a preprocessing step on P : For every edge e = ab
of P , let pe be the intersection point between the line
` containing e and the line perpendicular to ` passing
through r. If pe belongs to the relative interior of e,
subdivide it into the edges ape and peb. In the worst
case, each edge of P gets subdivided in two parts. See
Figure 5.

a

r

b

Figure 5: Splitting an edge of P .

2. Process a vertex of P . When the sweepline
stops at a vertex of P , we update the ordered list of
edges intersected by the sweepline.

3. Compute the intervals sequence for each el-
ement of S. When the sweepline reaches a point pj
in S, we are ready to compute the sequence Ij of
sorted intervals of pj . It suffices to walk along the
ordered list of edges intersected by the sweepline, and
compute the corresponding angles clockwise from the
ray emanating from r towards pj .

4. Construct the events sequence. Since for each
point in S we have computed the corresponding se-
quence of sorted intervals, all we need to do is to
merge these (at most n) sequences into a complete
sequence of events. We do that in a balanced fashion
as in the merge sort algorithm.

The normalization process takes O(m) time. Sort-
ing the points in S and the vertices of P by dis-
tance from r takes O(n log n) and O(m logm) time,

respectively. The ordered list of edges intersect-
ing the sweepline is maintained in a balanced bi-
nary search tree, so we can process all the vertices
of P in O(m logm) time. On the other hand, pro-
cessing all the points in S takes O(k) time (recall
that k denotes the total number of in- and out-
events in a Fixed MCR problem). Finally, merging
the O(n) sequences of sorted intervals takes O(k log n)
time from which in O(k) time we obtain a solu-
tion. In total, the time complexity of the algorithm
is O(n log n+m logm+k log n) time. The space com-
plexity is O(n+m+ k). We have thus proved:

Theorem 3 The Fixed MCR problem can be solved
in O((n+ k) log n+m logm) time and O(n+m+ k)
space.

3 Segment Restricted MCR (Problem 2)

Let ` = ab be the line segment restricting the position
of the rotation center r. Our approach to solve Prob-
lem 2 is to characterize, for each p in S, the inter-
section between P and the rotation circle cp while r
moves along ` from a to b. For each edge e = uv of P ,
we parametrize the intersection between cp and e us-
ing a function ω = f(t), for ω being the clockwise an-
gle shown in Figure 6, and t the y-coordinate of r. For
simplicity, we assume that a lies on the origin (0, 0)
and b on the positive y-axis.

r
t

a

b

θ

ω

φ

p

u

v

q

Figure 6: Parametrizing the intersection between cp
and uv while r moves along ab.

If we consider clockwise and counterclockwise an-
gles being positive and negative respectively, we have
from Figure 6 that ω = θ+φ. The angle θ can be eas-
ily computed in terms of t. By equating the distances
from r to p and q and invoking z = tanφ, we get an
equation of the form

Az2+Bt2+Ctz2+Dt2z+Etz+Ft+Gz+H = 0, (1)

where A, . . . ,H are constants depending on the coor-
dinates of p, u, and v. By resolving Equation (1) for
t we obtain

t =
f(z)±

√
g(z)

h(z)
, (2)
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where f(z), g(z), and h(z) are polynomials of de-
grees 2, 4, and 1, respectively. The motion of r along `
thus corresponds to a set of points (t, ω) for which p
belongs to P . These points form a set of simple re-
gions in the t-ω plane which are bounded by O(m)
curves. Any pair of such regions have disjoint interi-
ors, whereas their boundaries may intersect at most
at a common vertex. See Figure 7.

10 20 30-10-20

10

20

30

40

-10

x

y

p

a

b P

(a)

1 2 3 4

10

20

30

t

a

b

ω

(b)

Figure 7: (a) A Segment Restricted MCR instance for
a point p in S and (b) its corresponding t-ω diagram,
where the ω axis is measured in radians.

By processing all the points in S we end up with
a set of O(nm) regions bounded by O(nm) curves
in the t-ω plane. From Equation (2) we can show
that any two such curves intersect at most a constant
number of times, for a total of O(n2m2) intersection
points in the worst case. Using standard techniques,
in O(n2m2 log(nm)) time the arrangement of all these
regions can be computed, and the dual graph of the
resulting arrangement can be traversed looking for the
sub-region of maximum depth. Any point in this sub-
region determines a position of r and a rotation an-
gle ω that constitute a solution to the problem. In
summary we have:

Theorem 4 The Segment Restricted MCR problem
can be solved in O(n2m2 log(nm)) time and O(n2m2)
space.

Note that Problem 2 can also be solved in
O(n2m2 log(nm)) time even when r is restricted to
lie on a line L: Compute the Voronoi diagram of S
and the vertices of P , and apply the algorithm we just
described to a segment of L containing all the inter-
section points of L and the Voronoi edges. Moreover,
if we restrict r to lie on a polygonal chain with s seg-
ments, we can trivially obtain the optimal placement
of P using O(sn2m2 log(nm)) time. In both cases the
space complexity is O(n2m2).

4 Concluding remarks

We studied the problem of finding a rotation of a
simple polygon that covers the maximum number of
points from a given point set. We described algo-
rithms to solve the problem when the rotation center
is fixed, or lies on a line segment, a line, or a polyg-
onal chain. Without much effort our algorithms can
also be applied when the polygon has holes, and can
be easily modified to solve minimization versions of
the same problems.
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