
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Peeling the Cactus: Subexponential-Time Algorithms for Counting
Triangulations∗

Dániel Marx† Tillmann Miltzow‡

Abstract

Given a set of n points S in the plane, a triangulation
T of S is a maximal set of non-crossing segments with
endpoints in S. We present an algorithm that com-
putes the number of triangulations on a given set of
n points in time n(11+o(1))

√
n, significantly improving

the previous best running time of O(2nn2) by Alvarez
and Seidel [SoCG 2013]. Our main tool is identifying
separators of size O(

√
n) of a triangulation in a canon-

ical way. The definition of the separators are based
on the decomposition of the triangulation into nested
layers (“cactus graphs”).

1 Introduction

Given a set of n points in the plane, a triangulation T
of S is defined to be a maximal set of non-crossing line
segments with both endpoints in S. This set of seg-
ments together with the set S defines a plane graph.
It is easy to see that every bounded face of a triangu-
lation T is indeed a triangle. Triangulations are one
of the most studied concepts in discrete and computa-
tional geometry, studied both from combinatorial and
algorithmic perspectives. It is well known that the
number of possible triangulations of n points in con-
vex position is exactly the (n−2)-th Catalan number,
but counting the number of triangulations of arbitrary
point sets seems to be a much harder problem. There
is a long line of research devoted to finding better and
better exponential-time algorithms for counting trian-
gulations. The sequence of improvements culminated
in the O(2nn2) time algorithm of Alvarez and Seidel
[2], winning the best paper award at SoCG 2013. Our
main result significantly improves the running time of
counting triangulations by making it subexponential:

Theorem 1 (General Plane Algorithm) Given
a set S of n points in the plane, there exists an algo-
rithm that computes the number of all triangulations
of S in n(11+o(1))

√
n time.

∗Supported by the ERC grant “PARAMTIGHT: Parame-
terized complexity and the search for tight complexity results”,
no. 280152.
†Institute for Computer Science and Control, Hungarian

Academy of Sciences (MTA SZTAKI), dmarx@cs.bme.hu
‡Institute for Computer Science and Control, Hungarian

Academy of Sciences (MTA SZTAKI), t.miltzow@gmail.com

It is very often the case that restricting an algo-
rithmic problem to planar graphs allows us to solve it
with much better worst-case running time than what
is possible for the unrestricted problem. One can ob-
serve a certain “square root phenomenon”: in many
cases, the best known running time for a planar prob-
lem contains a square root in the exponent. For ex-
ample, the 3-Coloring problem on an n-vertex graph
can be solved in subexponential time 2O(

√
n) on pla-

nar graphs (e.g., by observing that a planar graph
on n vertices has treewidth O(

√
n)), but only 2O(n)

time algorithms are known for general graphs. More-
over, it is known that if we assume the Exponential-
Time Hypothesis (ETH), which states that there is
no 2o(n) time algorithm for n-variable 3SAT, then
there is no 2o(

√
n) time algorithm for 3-Coloring on

planar graphs and no 2o(n) time algorithm on general
graphs [7]. The situation is similar for the planar re-
strictions of many other NP-hard problems, thus it
seems that the appearance of the square root of the
running time is an essential feature of planar prob-
lems. A similar phenomenon occurs in the framework
of parameterized problems, where running times of

the form 2O(
√
k) · nO(1) or nO(

√
k) appear for many

planar problems and are known to be essentially best
possible (assuming ETH).

A triangulation of n points can be considered as a
planar graph on n vertices, hence it is a natural ques-
tion whether the square root phenomenon holds for
the problem of counting triangulations. Indeed, for
the related problem of finding a minimum weight tri-
angulation, subexponential algorithms with running
time nO(

√
n) are known [4, 5]. These algorithms are

based on the use of small balanced separators. Given
a plane triangulation on n points in the plane, it is
well known that there exists a balanced O(

√
n)-sized

separator that divides the triangulation into at least
two independent graphs [6]. The basic idea is to guess
a correct O(

√
n)-sized separator of a minimum weight

triangulation and recurse on all occurring subprob-
lems. As there are only nO(

√
n) potential graphs on

O(
√
n) vertices, one can show that the whole algo-

rithm takes nO(
√
n) time [4, 5].

Unfortunately, this approach has serious problems
when we try to apply it to counting triangulations.
The fundamental issue with this approach is that a tri-
angulation of course may have more than one O(

√
n)-

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



32nd European Workshop on Computational Geometry, 2016

sized balanced separators and hence we may over-
count the number of triangulations, as a triangulation
would be taken into account in more than one of the
guesses. To get around this problem, an obvious sim-
ple idea would be to say that we always try to guess a
“canonical” separator, for example, the lexicographi-
cally first separator. However, it is a complete mys-
tery how to guarantee in subsequent recursion steps
that the separator we have chosen is indeed the lex-
icographic first for all the triangulations we want to
count.

Perhaps the most important technical idea of the
paper is finding a suitable way of making the separa-
tors canonical. For this purpose, we define a decom-
position of a triangulation into nested layers of cactus
graphs. (A plane graph is a cactus graph if all ver-
tices and edges are incident to the outer face.) The
first layer is defined by the set of vertices and edges
incident to the outer face. Inductively, the i-th layer is
defined by the vertices and edges incident to the outer
faces after the first i−1 layers are removed. Note that
this definition may look similar to onion layers, but
actually is very different. The outerplanar index of a
graph is defined by the number of non-empty layers.

Given a triangulation T , we define small canonical
separators by distinguishing two cases. If T has more
than

√
n cactus layers, then one of the first

√
n layers

has size at most
√
n and we can define the one with

smallest index to be the canonical separator. Using
such a separator, we peel off some cacti to reduce the
problem size. In the case when we have only a few
cactus layers, we can define short canonical separator
paths from the interior to the outer face of the tri-
angulation. We formalize both ideas into a dynamic
programming algorithm. The main difficulty is to de-
fine the subproblems appropriately. We use the so-
called ring subproblems for the layer separators and
ring sector subproblems for the path separators.

As a byproduct of this algorithmic scheme, we can
efficiently count triangulations with a small number
of layers. This is similar to previous work on finding
a minimum weight triangulation [3] and counting tri-
angulations [1] for point sets with a small number of
onion layers.

Theorem 2 (Thin Plane Algorithm) Given a set
S of n points in the plane, there exists an algorithm
that computes the number of all triangulations of S
with outerplanar index k in nO(k) time.

2 Ring Subproblems

Our algorithm is based on dynamic programming: we
define a large number of subproblems that are more
general than the problem we are trying to solve. We
generalize the problem by considering rings: we need
to triangulate a point set in a region between two

polygons. Additionally, we may have layer constraints
prescribing that a certain number of vertices should
appear on certain layers.

In this section, we give a vague definition of the ring
subproblems used by the algorithm and sketch how an
algorithm that can solve those problems implies The-
orem 1 for counting triangulations. In Section 3 we
will sketch how to solve these subproblems for “thin
rings”. Section 4 sketches how to solve ring subprob-
lems in full generality using the algorithm from Sec-
tion 3 as an important subroutine.

outer layer Qout

inner layer Qin

free region

forbidden
region

free points P

Figure 1: A simple ring subproblem.

See Figure 1 for an illustration of the following def-
inition. A ring subproblem consists of: an outer layer
Qout, which consists of one or more simple polygons
(a ring subproblem is simple in case that there is only
one polygon.); an inner layer Qin, which is a cactus
graph and potentially empty; an inner and outer layer
index, which serve to determine the width and con-
veniently combine solutions of ring subproblems; and
potentially layer-constraints that indicate the size of
each layer. A valid triangulation of a ring subproblem
is a triangulation of the area and points between the
inner and outer layer, which satisfies the width con-
ditions and in case that layer-constraints are present:
each layer should have an appropriate size.

Theorem 3 Given a layer-unconstrained ring sub-
problem S with n free points, there exists an algo-
rithm, denoted by GeoRing, that computes the num-
ber of all triangulations of S in n(11+o(1))

√
n time.

Proof. [Sketch Theorem 1] The way, we use Theo-
rem 3 is to define for each k an layer-unconstrained
ring subproblem Ok such that each k-outerplane tri-
angulation of S corresponds to a valid k-outerplane
triangulation of Ok and vice versa. Then the algo-
rithm to count all triangulations of S is to count all
triangulations of Ok, for each k = 1, . . . , n. It takes
nO(

√
n) time for each k. We define Ok as follows. The

outer layer Qout is the boundary of the convex hull
of S. The inner layer Qin is empty. The free points
P are S without the points on the boundary of the
convex hull of S. The inner and outer layer index are
in-index(Ok) = k + 1 and out-index(Ok) = 1. �



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Figure 2: left: a simple ring subproblem right: the
transformed ring sector subproblem.

3 Thin Rings

This section is devoted to the proof of the following
theorem, which gives an algorithm for solving ring
subproblems with a certain width w. This algorithm
will be invoked by the main algorithm for values w ≤√
n. We will sketch the main ideas of the algorithm

and its runtime analysis.

Theorem 4 Given a simple (layer-constrained or
layer-unconstrained) ring subproblem S with width
w, there exists an algorithm RingSec that computes
the number of all valid triangulations of S in time
n(5+o(1))w.

Theorem 4 implies easily Theorem 2 in a similar
fashion as Theorem 3 implies Theorem 1.

We use a different kind of separator for this algo-
rithm. This requires a yet more specialized definition
of subproblems for our dynamic programming scheme:
ring sector subproblems. We sketch the proof of The-
orem 5. It easily implies Theorem 4, using a simple
transformation from ring subproblems to ring sector
subproblems, see Figure 2.

Theorem 5 Given a ring sector subproblem S with
width w on a set of n points, there exists an algorithm,
denoted RingSec that computes the number of all
valid triangulations of S in n(5+o(1))w time.

outer layer Qout

inner layer Qin

base edge base(S)

free region

boundary paths
p1 and p2

forbidden
region

free points P

Figure 3: A ring sector subproblem.

Ring Sector subproblems are defined very similar to
ring subproblems, see Figure 3. The essential differ-
ence is that some part of the outer layer is removed
and replaced by two boundary paths and a base edge.
These components are introduced for the recursion
step as illustrated in Figure 4. A valid triangulation

of a ring sector subproblem needs to satisfy some ad-
ditional boundary constraints to ensure the boundary
paths are indeed canonical separators of all counted
triangulations.

Given a valid triangulation T of a ring sector prob-
lem S it is not hard to show that every vertex on layer
i has a neighbor w.r.t.T in layer i− 1. Furthermore,
there is a unique triangle ∆ incident to the base edge.
From the vertex v of ∆ that is not incident to the base
edge, exists a path to the outer layer of S by always
choosing an adjacent vertex closer to the outer layer.
There is exactly one such path p, if we further require
that the vertex with lowest order label is taken. (The
order label is some distingued number from {1,. . . ,n}
that was fixed in advance for each vertex.) Such paths
are called canonical outgoing paths. We recurse on a
ring sector subproblem by guessing all potential such
triangles ∆ and all potential canonical paths p as de-
scribed above. For each such path, we can define two
subproblems Sright and Sleft, see Figure 4. We can

Sleft

Sright

p2

p

w1

w2

w3

u1u2

u3

u4

v1

v2

v3

v4

∆

p1

Figure 4: Splitting a ring sector subproblem.

restrict our triangulation T to these subproblems and
receive two new triangulations Tleft and Tright, and
conversely, given two triangulations Tleft and Tright,
we can combine it to a triangulation T . Thus if we
recursively count the number of valid triangulations of
subproblems Sright and Sleft, then we get exactly the
number of valid triangulations of S where ∆ is the
triangle incident to the base edge and p is the canoni-
cal outgoing path starting at vertex v or ∆. Summing
up for every possible triangle ∆ and path p, we get
exactly the number of valid triangulations of S.

If there are layer constraints in S, then we have
to do some more work. Let d, dleft, and dright be
the vectors that indicate the size of the layers for
T , Tleft, and Tright respectively. Except for the ver-
tices shared by Tleft and Tright, it holds that d equals
dleft + dright. Now, let us go back to our subproblems
Sleft and Sright. Let c be the layer-constraint vector
of S. Then, we define all pairs of compatible layer-
constraints (cleft, cright) such that two valid triangula-
tions for Sright(cright) and Sleft(cleft) respectively give
a triangulation for S with the correct number of ver-
tices on each layer. Here, the technical difficulty is



32nd European Workshop on Computational Geometry, 2016

to take into consideration the vertices shared by both
subproblems. Further we need to ensure that vertices
in the i-th layer of Sright will also be in the i-th layer
of S. We recurse on all subproblems occurring in this
way.

Proof. [Sketch Theorem 5] The correctness of the al-
gorithm follows from the correctness of the recursion.
The bound on the running time follows from bound-
ing the time required to solve a subproblem times the
number of subproblems. We save our intermediate
results in a search tree in order to prevent to handle
any subproblem more than once. The bound on the
number of subproblems follows from the fact that all
of their components are defined by at most two path
separators, and from the fact that a separator has
at most length w there are at most nO(w) of them.
The number of layer constraints is bounded by the
assumption that at most

√
n layers are non-zero. The

time for the recursive steps for one subproblem can
be asymptotically bounded by the number of recur-
sions, which in turn depends only on the number of
potential canonical paths and ways to split the layer
constraints in a compatible way. �

4 General Ring Subproblems

We briefly sketch the main algorithm in this section
and estimate its running time.

layer-constrained
simple outer ring
subproblem Sout

simple
layer-unconstrained
ring subproblem S

layer-unconstrained
inner ring

subproblem Sin

simple
layer-unconstrained ring

subproblem S1

simple
layer-unconstrained
ring subproblem S2

Figure 5: Overview of the algorithm.

The way we solve general ring subproblems is to
distinguish two cases. In the case that the ring sub-
problem is thin, that is, has only few layers (≤ √n),
we will use the algorithm of Theorem 4 as explained in
Section 3. In case that we have many layers (>

√
n),

we know that one of the outermost
√
n layers must

be of size ≤ √n by the pigeon hole principle. We use
this layer as a separator that splits the problem into
a thin outer part and an inner part.

To be more explicit, let S be a ring problem and T
be valid triangulation of S. By the outer and inner
layer index of S, we already know exactly the num-
ber of layers that T has. Consider the case that T
has more than

√
n layers. Then among the

√
n layers

closest to the outer layer, one must have size less than
or equal to

√
n. Note that the layer L that is actually

closest to the outer layer of S is uniquely determined.
We try to guess this layer L, which requires guessing
at most

√
n points. The guess defines an inner ring

subproblem Sin and an outer ring subproblem Sout,
as depicted in Figure 5. In case the cactus layer L is
disconnected or has disconnected bounded faces, the
inner ring subproblems consist of several components.
In this case, we split it into smaller subproblems, be-
fore we proceed with the recursion.

We can restrict T to Sout to attain a triangulation
Tout. It is clear that all layers different from L in
Tout have size larger than

√
n. Therefore, we want to

count only those triangulations of Sout that have all
layers (except L) of size larger than

√
n. We use layer

constraints for this purpose: we solve Sout with every
possible layer constraint where every layer is required
to have size greater than

√
n.

The running time can be estimated by bounding
the total number of ring subproblems times the time
spent per ring subproblem. Each ring subproblem
is defined by an inner and outer layer and a layer
constraint. In the course of the algorithm only inner
and outer layers of size less than or equal to

√
n are

guessed, and there are at most nO(
√
n) of them. As we

will never constrain more than
√
n layers to be non-

zero, the total number of layer constraints is bounded
by nO(

√
n). For the case of rings with width smaller

than
√
n, the runtime is given by Theorem 4. In the

other case, the bound stems from the total number of
layers of size

√
n, which is nO(

√
n).

References

[1] V. Alvarez, K. Bringmann, R. Curticapean, and
S. Ray. Counting triangulations and other crossing-
free structures via onion layers. D&C, 53(4):675–690,
2015.

[2] V. Alvarez and R. Seidel. A simple aggregative algo-
rithm for counting triangulations of planar point sets
and related problems. In SoCG’13, pages 1–8, 2013.

[3] E. Anagnostou and D. Corneil. Polynomial-time in-
stances of the minimum weight triangulation problem.
Computational Geometry, 3(5):247–259, 1993.

[4] C. Knauer and A. Spillner. A fixed-parameter algo-
rithm for the minimum weight triangulation problem
based on small graph separators. In WG’06, pages
49–57, 2006.

[5] A. Lingas. Subexponential-time algorithms for mini-
mum weight triangulations and related problems. In
CCCG’98, 1998.

[6] R. J. Lipton and R. E. Tarjan. A separator theorem
for planar graphs. SIAM Journal on Applied Mathe-
matics, 36(2):177–189, 1979.

[7] D. Lokshtanov, D. Marx, and S. Saurabh. Lower
bounds based on the Exponential Time Hypothesis.
Bulletin of the EATCS, 105:41–72, 2011.


