
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Computing Pretropisms for the Cyclic n-Roots Problem∗

Jeff Sommars† Jan Verschelde‡

Abstract

The cyclic n-roots problem is an important bench-
mark problem for polynomial system solvers. We con-
sider the pruning of cone intersections for a polyhedral
method to compute series for the solution curves.

1 Introduction

The cyclic n-roots problem asks for the solutions of a
polynomial system, commonly formulated as

x0 + x1 + · · ·+ xn−1 = 0

i = 2, 4, . . . , n− 1 :

n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · ·xn−1 − 1 = 0.

(1)

This problem is important in the study of biunimod-
ular vectors, a notion that traces back to Gauss, as
stated in [10]. In [3], Backelin showed that if n has a
divisor that is a square, i.e. if d2 divides n for d ≥ 2,
then there are infinitely many cyclic n-roots. The con-
jecture of Björck and Saffari [5], [10, Conjecture 1.1]
is that if n is not divisible by a square, then the set
of cyclic n-roots is finite.

As shown in [1], the result of Backelin can be recov-
ered by polyhedral methods. Polyhedral methods to
solve a polynomial system consider the Newton poly-
topes of the polynomials in the system. The Newton
polytope of a polynomial in several variables is the con-
vex hull of the exponent tuples of the monomials that
appear with nonzero coefficient in the polynomial.
Looking for positive dimensional solution sets, we look
for series developments of the solutions, and in partic-
ular we look for Puiseux series. The leading exponents
of Puiseux series are called tropisms. A pretropism is
a vector that forms the minimal inner product with a
face of every one of the given polytopes, where none of
the faces are 0-faces. Pretropisms are candidates for
being tropisms, but not every pretropism is a tropism,
as pretropisms depend only on the Newton polytopes
of the system, see e.g. [13] for a mathematical back-
ground on tropical algebraic geometry.

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1440534.
†Department of Mathematics, Statistics, and Computer Sci-

ence, University of Illinois at Chicago, sommars1@uic.edu
‡Department of Mathematics, Statistics, and Computer Sci-

ence, University of Illinois at Chicago, janv@uic.edu.

Our problem can thus be stated as follows. Given a
tuple of Newton polytopes, compute all pretropisms.
In [15] we examined the case where all polytopes are
in general position with respect to each other. In this
paper we focus on the Newton polytopes of the cyclic
n-roots problem.

Prior and related work. In [6], the computation
of pretropisms is defined as the common refinement
of the normal fans of the Newton polytopes [18]. The
software Gfan [12] relies on cddlib [11] in its applica-
tion of reverse search algorithms [2].

2 Pruning Cone Intersections

To introduce our algorithms, consider Figure 1. For
three Newton polytopes (P1, P2, P3), the leaves of the
trees represent cones of pretropisms. Nodes without
children that are not leaves correspond to cone inter-
sections that contain only the zero dimensional cone.

A B C

D E F G H I F J H G

K L MNOP Q R S TUMNOP R S Q

A B C

D E F G H I F J H G

K L MNOP Q R S TU

Figure 1: Nodes A, B, C represent cones to P1. In-
tersections of those cones with the cones of P2 are
represented by nodes D through J. Duplicate nodes
are removed from the second tree.

The removal of duplicate nodes eliminates many
cone intersections at deeper levels in the tree.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



32nd European Workshop on Computational Geometry, 2016

3 Algorithms

Our algorithm takes as input the edge skeletons of
a set of Newton polytopes; the edge skeleton of a
polytope can be computed by a polynomial-time al-
gorithm, presented in [9]. In our implementation, we
use edge objects that have vertices, references to their
neighboring edges, and the cone of the set of inner
normals of all of the facets on which the edge rests.
Note that since the cyclic-n polytopes are not all full
dimensional, we included generating rays of the lin-
eality spaces as needed.

Algorithm 2 sketches the outline of the algorithm
to compute all pretropisms of a tuple of n polytopes.
Along the lines of the gift wrapping algorithm, for
every edge of the first polytope we take the plane
that contains this edge and consider where this plane
touches the second polytope. Algorithm 1 starts ex-
ploring the edge skeleton defined by the edges con-
nected to the vertices in this touching plane.

Algorithm 1 Explores the skeleton of edges to find
pretropisms of a polytope P and a cone C.

1: function ExploreEdgeSkeleton(P , C)
2: r := a random ray inside C
3: m := min{〈a, r〉, a ∈ P}
4: inr(P ) := {a ∈ P, 〈a, r〉 = m}
5: EdgesToTest := edges e of P : e ∩ inr(P ) 6= ∅
6: Cones := ∅
7: TestedEdges := ∅
8: while EdgesToTest 6= ∅ do
9: E := pop an edge from EdgesToTest

10: CE := normal cone to E
11: ShouldAddCone := False
12: if CE contains C then
13: ConeToAdd := C
14: ShouldAddCone := True
15: else if C ∩ CE 6= {0} then
16: ConeToAdd := C ∩ CE

17: ShouldAddCone := True
18: end if
19: if ShouldAddCone then
20: Cones := Cones ∪ ConeToAdd
21: Edges := Edges ∪ E
22: for each neighboring edge e of E do
23: if e 6∈ TestedEdges then
24: EdgesToTest := EdgesToTest∪e
25: end if
26: end for
27: end if
28: TestedEdges := TestedEdges ∪ E
29: end while
30: return Cones
31: end function

The exploration of the neighboring edges corre-
sponds to tilting the ray r in Algorithm 1, as in rotat-

ing a hyperplane in the gift wrapping method. One
may wonder why the exploration of the edge skele-
ton in Algorithm 1 needs to continue after the state-
ment on line 5. This is because the cone C has the
potential to intersect many cones in P , particularly
if P has small cones. Furthermore it is reasonable
to wonder why we bother checking cone containment
when computing the intersection of two cones provides
more useful information. Checking cone containment
means checking if each of the generators of C is con-
tained in CE , which is a far less computationally ex-
pensive operation than computing the intersection of
two cones.

In the Newton-Puiseux algorithm to compute se-
ries expansions, we are interested only in the edges
on the lower hull of the Newton polytope, i.e. those
edges that have an upward pointing inner normal [17].
For Puiseux for space curves, the expansions are nor-
malized so that the first exponent in the tropism is
positive. Algorithm 2 is then adjusted so that calls
to the edge skeleton computation of Algorithm 1 are
made with rays that have a first component that is
positive.

Algorithm 2 Finds pretropisms for a given tuple of
polytopes (P1, P2, . . . , Pn).

1: function FindPretropisms(P1, P2, . . . , Pn)
2: Cones := set of normal cones to edges in P1

3: for i := 2 to n do
4: NewCones := ∅
5: for Cone in Cones do
6: NewCones := NewCones ∪

ExploreEdgeSkeleton(Pi, Cone)
7: end for
8: Cones := NewCones
9: end for

10: Pretropisms := set of generating rays for each
cone in Cones

11: return Pretropisms
12: end function

3.1 Correctness

To see that this algorithm will do what it claims, we
must define an additional term. A pretropism graph
is the set of edges for a polytope that have normal
cones intersecting a given cone. We will now justify
why the cones output by Algorithm 1 correspond to
the set of cones that live on a pretropism graph.

Theorem 1 Pretropism graphs are connected
graphs.

Proof. Let C be a cone, and let P be a polytope
with edges e1, e2 such that they are in the pretropism
graph of C. Let C1 be the cone of the intersection



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

of the normal cone of e1 with C, and let C2 be the
cone of the intersection of the normal cone of e2 with
C. If we can show that there exists a path between
e1 and e2 that remains in the pretropism graph, then
the result will follow.

Let n1 be a normal to e1 that is also in C1 and let
n2 be a normal to e2 that is also in C2. Set n = tn1 +
(1− t)n2 where 0 ≤ t ≤ 1. Consider varying t from 0
to 1; this creates the cone Cn, a cone which must lie
within C, as both n1 and n2 lie in that cone. As n
moves from 0 to 1, it will progressively intersect new
faces of P that have all of their edges in the pretropism
graph. Eventually, this process terminates when we
reach e2, and we have constructed a path from e1 to
e2. Since a path always exists, we can conclude that
pretropism graphs are connected graphs. �

Since pretropism graphs are connected, Algorithm 1
will find all cones of edges on the pretropism graph. In
Algorithm 2, we repeatedly explore the edge skeleton
of polytope Pi, and use the pruned set of cones to
explore Pi+1. From this, it is clear that Algorithm 2
will suffice to find all pretropisms.

4 Comparison With Our Previous Algorithm

Our algorithm in [15] restricted the pruning of the
cone intersections in a vertical fashion: nodes in the
tree with cone intersections that yield only {0} will
not have any children. That algorithm works well for
polytopes with randomly generated coordinates.

In this paper we consider polytopes that are not in
generic position. In this situation, intersecting normal
cones to edges may lead to cones of normals of higher
dimensional cones. At the same level in the tree we
can then have duplicate cones or cones that are con-
tained in other cones. In those cases were one cone is
contained in another, the smaller cone can be pruned
from the tree. We call this type of pruning horizon-
tal pruning. For generic polytopes horizontal pruning
would not reduce the number of cone intersections.
However, in special cases like the cyclic n-root prob-
lem, there is the potential to dramatically reduce the
scope of the problem through horizontal pruning.

To illustrate horizontal pruning, consider Figure 1.
These graphs illustrate computing the pretropisms for
three fictitious, non-generic polytopes P1, P2, P3 with
the two distinct algorithms. Nodes A, B, C represent
the cones of the edges of P1, the row below that repre-
sents the resulting cones from performing Algorithm 1
with P2 and A, B, or C. The row below that varies in
the two figures. In the tree at the top of Figure 1, the
process iterates and Algorithm 1 is performed with
P3 and each of the input cones D through J. The tree
at the bottom of Figure 1 shows how the horizontal
pruning has the potential to improve over the previ-
ous algorithm. Since there are duplicate nodes for F,
G, and H, each of these paths only needs to be fol-

lowed once. Though this does not lead to dramatic
improvements in this fictitious case, as the number
of polytopes increases, the benefit of pruning com-
pounds.

5 Computational Experiments

We developed a preliminary version of Algorithm 2 in
Sage [16], using its modules for lattice polytopes [14],
and polyhedral cones [7]; Sage uses PPL [4] to com-
pute cone intersections. Our preliminary code is avail-
able at https://github.com/sommars/GiftWrap. We
ran the code on a Red Hat Enterprise Linux worksta-
tion of Microway, with Intel Xeon E5-2670 processors
at 2.6 GHz.

Instead of directly calculating the pretropisms of
the Newton polytopes of the cyclic n-root problem,
we chose to calculate pretropisms of the reduced cyclic
n-root problem. This reformulation [8] is obtained by
performing the substitution xi = yi

y0
for i = 0 . . . n−1.

Clearing the denominator of each equation leaves the
first n − 1 equations as polynomials in y1, . . . yn−1.
We compute pretropisms of the Newton polytopes of
these n − 1 equations because they yield meaning-
ful sets of pretropisms. Calculating with the reduced
cyclic n-roots problem has the benefit of removing
much of the symmetry present in the standard cyclic
n-roots problem, as well as decreasing the ambient
dimension by one. Unlike the standard cyclic n-roots
problem, some of the polytopes of the reduced cyclic
n-roots problem are full dimensional, which leads to
calculation speed ups. A simple transformation can
be performed on the pretropisms we calculate of re-
duced cyclic n-root problem to convert them to the
pretropisms of cyclic n-root problem, so calculating
the pretropisms of reduced cyclic n-roots problem is
equivalent to calculating the pretropisms of the cyclic
n-roots problem.

In Table 1, we have recorded the number of cone in-
tersections performed and the number of times cone
containments let us avoid performing additional inter-
sections for each of the reduced cyclic n-root systems
with n ≤ 10. Table 1 also contains a comparison be-
tween the two sums, which acts as a way of evaluating
the quality of the algorithms. We consider the unit of
work of each algorithm to be the total number of in-
tersections performed, as that is the constraining part
of the algorithm. As n increases, the ratio tends to
increase as well, demonstrating that Algorithm 2 rep-
resents a substantial improvement over our previous
algorithm. We expect that the result would become
even more dramatic with higher n, but in our testing,
our previous algorithm was too inefficient to termi-
nate for n > 10.



32nd European Workshop on Computational Geometry, 2016

n intersections containments sum intersections containments sum ratio
4 63 2 65 54 2 56 1.16071
5 750 20 770 395 5 400 1.92500
6 4,531 1,232 5,763 2,982 291 3,273 1.76076
7 105,982 5,767 111,749 18,798 343 19,141 5.83820
8 479,640 181,507 661,147 145,125 3,922 149,047 4.43582
9 9,232,384 1,993,049 11,225,433 1,101,563 16,313 1,117,876 10.04175

10 70,026,302 23,838,851 93,865,153 8,846,353 165,203 9,011,556 10.41608

Table 1: Columns two through four contain results when our previous algorithm is applied to the reduced cyclic
n-roots problem while columns five through seven contain the results of Algorithm 2. The final column represents
the ratio of the previous sum to the sum of Algorithm 2.

6 Comparison with Gfan

As we reported in [15], on randomly generated poly-
topes, our code was competitive with Gfan [12]. Al-
though the additional pruning criteria presented in
this paper are promising, on the specific cyclic n-roots
problem, our Python prototype is not as good as the
compiled code of Gfan. Our code tends to be slower
by a factor of two, but we hope to be more competi-
tive if we improve our ability to exploit the symmetry
of the polytopes.

The computational complexity is such that high
level parallelism is effective. Instead of iterating
through all of the cones from line 5 of Algorithm 2, we
can create a queue of them and then perform Algo-
rithm 1. We then initialize some number of processes
and give them successive cones from the queue until
the queue is empty. Once the queue is empty, the re-
sulting cones are pruned and combined and the algo-
rithm iterates. We have incorporated this parallelism
into our prototype Sage code.

References

[1] D. Adrovic and J. Verschelde. Computing Puiseux se-
ries for algebraic surfaces. In J. van der Hoeven and
M. van Hoeij, editors, Proceedings of the 37th Inter-
national Symposium on Symbolic and Algebraic Com-
putation (ISSAC 2012), pages 20–27. ACM, 2012.

[2] D. Avis and K. Fukuda. A pivoting algorithm for
convex hulls and vertex enumeration of arrangements
and polyhedra. Discrete Comput. Geom., 8(3):295–
313, 1992.

[3] J. Backelin. Square multiples n give infinitely many
cyclic n-roots. Reports, Matematiska Institutionen 8,
Stockholms universitet, 1989.

[4] R. Bagnara, P. Hill, and E. Zaffanella. The Parma
Polyhedral Library: Toward a complete set of numer-
ical abstractions for the analysis and verification of
hardware and software systems. Science of Computer
Programming, 72(1–2):3–21, 2008.

[5] G. Bjöck and B. Saffari. New classes of finite unimod-
ular sequences with unimodular Fourier transforms.

Circulant Hadamard matrices with complex entries.
C. R. Acad. Sci. Paris, Série I, 320:319–324, 1995.

[6] T. Bogart, A. Jensen, D. Speyer, B. Sturmfels, and
R. Thomas. Computing tropical varieties. Journal of
Symbolic Computation, 42(1):54–73, 2007.

[7] V. Braun and M. Hampton. polyhedra module of
Sage. The Sage Development Team, 2011.

[8] I. Emiris. Sparse Elimination and Applications in
Kinematics. PhD thesis, University of California at
Berkeley, Berkeley, 1994.

[9] I. Emiris, V. Fisikopoulos, and B. Gärtner. Efficient
edge-skeleton computation for polytopes defined by
oracles. Journal of Symbolic Computation, 73:139–
152, 2016.

[10] H. Führ and Z. Rzeszotnik. On biunimodular vectors
for unitary matrices. Linear Algebra and its Applica-
tions, 484:86–129, 2015.

[11] K. Fukuda and A. Prodon. Double description
method revisited. In Selected papers from the 8th
Franco-Japanese and 4th Franco-Chinese Conference
on Combinatorics and Computer Science, volume
1120 of Lecture Notes in Computer Science, pages
91–111. Springer-Verlag, 1996.

[12] A. Jensen. Computing Gröbner fans and tropical va-
rieties in Gfan. In M. Stillman, N. Takayama, and
J. Verschelde, editors, Software for Algebraic Geome-
try, volume 148 of The IMA Volumes in Mathematics
and its Applications, pages 33–46. Springer-Verlag,
2008.

[13] D. Maclagan and B. Sturmfels. Introduction to Trop-
ical Geometry, volume 161 of Graduate Studies in
Mathematics. American Mathematical Society, 2015.

[14] A. Novoseltsev. lattice polytope module of Sage.
The Sage Development Team, 2011.

[15] J. Sommars and J. Verschelde. Exact gift wrapping
to prune the tree of edges of Newton polytopes to
compute pretropisms. arXiv:1512.01594.

[16] W. Stein et al. Sage Mathematics Software (Ver-
sion 6.9). The Sage Development Team, 2015.
http://www.sagemath.org.

[17] R. Walker. Algebraic Curves. Princeton University
Press, 1950.

[18] G. Ziegler. Lectures on Polytopes. Springer-Verlag,
1995.


