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Drawing trees and triangulations with few geometric primitives

Gregor Hültenschmidt∗ Philipp Kindermann∗ Wouter Meulemans† André Schulz∗

Abstract

We define the visual complexity of a plane graph draw-
ing to be the number of geometric objects needed
to represent all its edges. In particular, one ob-
ject may represent multiple edges (e.g. you need
only one line segment to draw two collinear edges
of the same vertex). We show that trees can be
drawn with 3n/4 straight-line segments on a polyno-
mial grid, and with n/2 straight-line segments on a
quasi-polynomial grid. We also study the problem of
drawing maximal planar graphs with circular arcs and
provide an algorithm to draw such graphs using only
(5n− 11)/3 arcs. This provides a significant improve-
ment over the lower bound of 2n for line segments for
a nontrivial graph class.

1 Introduction

The complexity of a graph drawing can be assessed
in a variety of ways (crossing number, bends, angu-
lar resolution, etc.). In this abstract, we consider
the visual complexity of planar graphs, that is, the
number of simple geometric objects necessary for any
drawing. For a number of graph classes, upper and
lower bounds are known for segment drawings (al-
lowing only straight-line segments) and arc drawings
(allowing circular arcs); the upper bounds are sum-
marized in Table 1. However, these upper bounds do
not require the drawings to be on the grid. A trivial
lower bound is provided by ϑ/2, where ϑ denotes the
number of odd-degree vertices. For triangulations and
general planar graphs, a lower bound of 2n + O(1) is
known [1], where n is the number of vertices.

In this abstract, we look at segment drawings of
trees on a grid and at arc drawings of triangula-
tions. We give an algorithm that draws trees on an
O(n2) × O(n1.58) grid using 3n/4 straight-line seg-
ments. This algorithm can be modified to generate
drawings with an optimal ϑ/2 segments on a quasi-
polynomial grid; so far, no algorithms on the grid have
been known. Furthermore, we prove that (5n− 11)/3
arcs are sufficient to draw any triangulation with n
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Table 1: Upper bounds on the visual complexity for
planar graphs. New results are marked with an aster-
isk. Here, n is the number of vertices, ϑ the number of
odd-degree vertices and e the number of edges. Con-
stant additions or subtractions have been omitted.

Class Segment Arc
Trees ϑ/2 [1] ϑ/2 [1]
3-trees 2n [1] 11e/18 [4]
3-connected 5n/2 [1] 2e/3 [4]
cubic 3-conn. n/2 [3] n/2 [3]
triangulation 7n/3 [2] 5n/3 ∗

planar 16n/3− e [2] 14n/3− e ∗

vertices. We highlight that this bound is signifi-
cantly lower than the 2n + O(1) lower bound known
for segment drawings [2] and the so far best-known
2e/3+O(1) = 2n+O(1) upper bound for circular arc
drawings [4]. A straightforward extension shows that
(14n−3e−29)/3 arcs are sufficient for general planar
graphs with e edges.

2 Trees with segments on the grid

Heavy paths. Let T = (V,E) be an undirected tree.
Our algorithm follows the basic idea of the circular
arc drawing algorithm by Schulz [4]. We make use
of the heavy path decomposition [5] of trees, which is
defined as follows. First, root the tree in some ver-
tex r. Then, for each non-leaf u, compute the size of
each subtree rooted in one of its children. Let v be
the child of u with the largest subtree (one of them in
case of a tie). Then, (u, v) is called a heavy edge and
all other outgoing edges of u are called light edges.
The maximal connected components of heavy edges
form the heavy paths of the decomposition.

We call the vertex closest to the root the top node
of a heavy path and the subtree rooted in the top
node the heavy path subtree. We define the depth of
a heavy path (subtree) as follows. We treat each leaf
that is not incident to a heavy edge as a heavy path of
depth 0. The depth of each other heavy path is by 1
larger than the maximum depth of all heavy paths
that are connected by an outgoing light edge. Heavy
path subtrees of common depth are disjoint.

Boxes. We order the heavy paths nondecreasingly by
their depth and then draw their subtrees in this or-
der. Each heavy path subtree is placed completely
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Figure 1: (a) The heavy path box Bi with top node ui

and its lengths; (b) the merged box B∗i for B2i−1
and B2i and its lengths.

inside an L-shaped box (heavy path box ) with its top
node placed at the reflex angle; see Fig. 1a for an il-
lustration of a heavy path box Bi with top node ui,
width wi = `i + ri, and height hi = ti + bi. We re-
quire that (i) heavy path boxes of common depth are
disjoint, (ii) ui is the only vertex on the boundary,
and (iii) bi ≥ ti. Note that the boxes will be mirrored
horizontally and/or vertically in some steps of the al-
gorithm. We draw each heavy path subtree of depth 0
as a heavy path box Bi with `i = ri = ti = bi = 1.

Drawing. Assume that we have already drawn each
heavy path subtree of depth k. When drawing the
subtree of a heavy path 〈v1, . . . , vm〉 of depth k + 1,
we proceed as follows. The last vertex on a heavy path
has to be a leaf, so vm is a leaf. If outdeg(vm−1) is
odd, we place the vertices v1, . . . , vm on a vertical line;
otherwise, we place only the vertices v1, . . . , vm−1 on
a vertical line and treat vm as a heavy path subtree
of depth 0 that is connected to vm−1. For 1 ≤ h ≤
m − 1, all heavy path boxes adjacent to vh will be
drawn either in a rectangle on the left side of the edge
(vh, vh+1) or in a rectangle on the right side of the
edge (vh−1, vh) (a rectangle that has v1 as its bottom
left corner for h = 1); see Fig. 2a for an illustration
with even outdeg(vm−1).

We now describe how to place the heavy path
boxes B1, . . . , Bk with top node u1, . . . , uk, respec-
tively, incident to some vertex v on a heavy path into
the rectangles described above. First, assume that k is
even. Then, for 1 ≤ i ≤ k/2, we order the boxes such
that b2i ≤ b2i−1. We place the box B2i−1 in the lower
left rectangle and box B2i in the upper right rectan-
gle in such a way that the edges (v, u2i−1) and (v, u2i)
can be drawn with a single segment. To this end, we
construct a merged box B∗i as depicted in Fig. 1b
with `∗i = max{`2i−1, `2i}, r∗i = max{r2i−1, r2i}, and
w∗i = `∗i + r∗i ; the heights are defined analogously.
We mirror all merged boxes horizontally and place

them in the lower left rectangle (of width
∑k/2

i=i w
∗
i )

as follows. We place B∗1 in the top left corner of the
rectangle. For 2 ≤ j ≤ k/2, we place B∗j directly
to the right of B∗j−1 such that its top border lies ex-
actly t∗j−1 rows below the top border of B∗j−1. Sym-
metrically, we place the merged boxes (vertically mir-
rored) in the upper right rectangle. Finally, we place
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Figure 2: (a) Placement of a heavy path, its box B,
and areas for the adjacent heavy path boxes. (b)
Placement of the heavy path boxes adjacent to v.

each box B2i−1 (horizontally mirrored) in the lower
left copy of B∗i such that their inner concave angles
coincide, and we place each box B2i (vertically mir-
rored) in the upper right copy of B∗i such that their
inner concave angles coincide; see Fig. 2b. If k is odd,
we simply add a dummy box Bk+1 = Bk that we
remove afterwards.

Analysis. We will now calculate the width wv and the
height hv of this construction. For the width, we have

wv = 2

k/2∑
i=1

w∗i = 2

k/2∑
i=1

max{w2i−1, w2i} ≤ 2

k∑
i=1

wi.

The height of each rectangle in the construction is

at least 2
∑k/2

i=1 t
∗
i , but we have to add a bit more

for the bottom parts of the boxes; in the worst case,
this is max1≤j≤k/2 b2j−1 in the lower rectangle and
max1≤h≤k/2 b2h in the upper rectangle. Since we re-
quire bi ≥ ti for each i, we have

hv ≤ 2

k/2∑
i=1

t∗i + max
1≤j≤k/2

b2j−1 + max
1≤h≤k/2

b2h

≤ 2

k∑
i=1

ti +

k∑
j=1

bi ≤
3

2

k∑
i=1

hi.

Since all heavy path trees of common depth are
disjoint, the heavy path boxes of common depth are
also disjoint. Further, we place only the top vertex
of a heavy path on the boundary of its box. Finally,
since we order the boxes such that b2i ≤ b2i−1 for
each i, for the constructed box B we have b ≥ t.

Due to the properties of a heavy path decomposi-
tion, the maximum depth is dlog ne. Recall that we
place the depth-0 heavy paths in a box of width and
height 2. Hence, by induction, a heavy path subtree
of depth d with n′ vertices lies inside a box of width
2 · 2d · n′ and height 2 · (3/2)d · n′. Thus, the whole
tree is drawn in a box of width 2 · 2dlognen = O(n2)
and height 2·(3/2)dlognen = O(n1+log 3/2) ⊆ O(n1.58).
Following the analysis of Schulz [4], the drawing uses
at most d3e/4e = d3(n− 1)/4e segments.

Theorem 1 Every tree admits a straight-line draw-
ing that uses at most d3e/4e arcs on an O(n2) ×
O(n1.58) grid.
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Figure 3: Further improvement on the visual com-
plexity via increasing the size of heavy path boxes.
The old box B and the modified box B′.

We finish this section with an idea of how to get
a grid drawing with the best possible number of
straight-line segments. Due to the limited space we
give only a sketch. Observe that there is only one
situation in which the previous algorithm uses more
segments than necessary, that is the top node of each
heavy path. This suboptimality can be “repaired” by
tilting the heavy path as sketched in Fig. 3. Note that
the incident subtrees with smaller depth will only be
translated. To make this idea work, we have to blow
up the size of the heavy path boxes. We are left with
scaling in each “round” by a polynomial factor. Since
there are only log n rounds, we obtain a drawing on a
quasi-polynomial grid.

Theorem 2 Every tree admits a straight-line draw-
ing with the smallest number of straight-line segments
on a quasi-polynomial grid.

3 Triangulations with circular arcs

As used in previous articles [2, 4], a canonical order
v1, . . . , vn on the vertices of a triangulation structures
our drawing algorithm. However, we use the order
in reverse. We start by drawing v1, v2, and vn on a
circle; see Fig. 4a. We assume that they are placed as
shown and hence refer to the arc connecting v1 and v2
as the bottom arc. The interior of the circle is the un-
drawn region U which we maintain as a strictly convex
shape. The vertices incident to U are referred to as the
horizon and denoted in order, h1, h2, . . . , hk−1, hk; we
maintain that h1 = v1 and hk = v2. Initially, we have
k = 3 and h2 = vn. We iteratively take a vertex hi of
the horizon (the latest in the canonical order) to pro-
cess it. Processing a vertex means that we draw its
undrawn neighbors and edges between these, thereby
removing hi from the horizon.

Invariant. We maintain as invariant that each ver-
tex v (except v1, v2, and vn) has a segment `v in-
cident from above such that its downward extension
intersects the bottom arc strictly between v1 and v2.
Observe that, since U is strictly convex, this and h are
the only intersection points for `h with the undrawn
region’s boundary for a vertex h on the horizon.

v1 = h1 v2 = h3

h1 h4

h2 h3

(a) (b)

vn = h2

Figure 4: (a) Initial state of the algorithm. (b) State
of the algorithm after processing vn. Hatching indi-
cates undrawn region.

Processing a vertex. To process a vertex hi, we first
consider the triangle hi−1hihi+1: this triangle (except
for its corners) is strictly contained in U . We draw a
circular arc A from hi−1 to hi+1 with maximal cur-
vature, but within this triangle; see Fig. 5a. This
ensures a plane drawing, maintaining a strictly con-
vex undrawn region. Moreover, it ensures that hi can
“see” the entire arc A.

Vertex hi may have a number of neighbors that were
not yet drawn. To place these neighbors, we dedicate
a fraction of the arc A. In particular, this fraction
is determined by the intersections of segments v1hi

and v2hi with A; see Fig. 5b. By convexity of U ,
these intersections exist. If hi−1 is equal to v1, the
intersection for v1hi degenerates to v1; similarly, the
intersection of v2hi may degenerate to v2. We place
the neighbors in order along this designated part of A,
drawing the relevant edges as line segments. This im-
plies that all these neighbors obtain a line segment
that extends to intersect the bottom arc, maintaining
the invariant. We position one neighbor to be a con-
tinuation of segment `hi , which by the invariant must
extend to intersect the designated part of A as well.

Schnyder woods. Using a Schnyder realizer of the tri-
angulation, we decompose the edges into three trees:
T1, T2, and Tn rooted at v1, v2, and vn, respectively.
Following the rationale of Durocher and Mondal [2],
we assume w.l.o.g. that Tn has the smallest number
of leaves. In particular, the total number of leaves
in a minimal realizer is upper bounded by 2n− 5 [2].
Hence, Tn has at most (2n− 5)/3 leaves.

Complexity. We start with one circle and subse-
quently process vn, . . . , v4, adding one circular arc per
vertex (representing edges in T1 and T2) and a num-
ber of line segments (representing edges in Tn). Note
that processing v3 has no effect since the edge v1v2
is the bottom arc. Counting the circle as one arc, we
thus have n − 2 arcs in total. At every vertex in Tn,
one incoming edge is collinear with the outgoing one
towards the root. We charge each line segment to a
leaf of Tn: there are at most (2n− 5)/3 segments.

Thus, the total visual complexity is at most n−2+
(2n − 5)/3 = (5n − 11)/3. In particular, this shows
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Figure 5: (a) Arc A lies inside the dashed triangle
hi−1hihi+1. (b) Undrawn neighbors of hi are placed
on A, in the section determined by v1 and v2. One
neighbor is placed to align with `hi towards a prede-
cessor of hi.

that, with circular arcs, we obtain greater expressive
power for a nontrivial class of graphs in comparison
to the 2n lower bound that is known for drawing tri-
angulations with line segments.

Degrees of freedom. One circular arc has five degrees
of freedom (DoF) which is one more than a line seg-
ment. In this light, our algorithm with circular arcs
uses roughly 5 · 5n/3 = 25n/3 DoF. We disregard any
DoF reduction arising from the need to have arcs co-
incide at vertices. This remains an improvement over
the result of Durocher and Mondal [2], using roughly
4 · 7n/3 = 28n/3 DoF. The lower bound for line seg-
ments (4 · 2n = 24n/3) is lower than what we seem
to achieve with our algorithm. However, our algo-
rithm uses line segments rather than arcs to draw the
tree Tn. Thus, the actual DoF employed by the algo-
rithm is roughly 5n + 4 · 2n/3 = 23n/3, which is in
fact below the lower bound for line segments.

Theorem 3 Every triangulation admits a circular
arc drawing that uses at most (5n− 11)/3 arcs.

4 General planar graphs

Simple bound. The algorithm for triangulations eas-
ily adapts to draw a general planar graph G with n
vertices and e edges. As connected components can be
drawn independently, we assume G is connected. We
need to only triangulate G, thereby adding 3n− e− 6
chords. We then run the algorithm described in the
previous section, using (5n − 11)/3 arcs. Finally, we
remove the chords from the drawing. Each chord may
split an arc into two arcs, thereby increasing the total
complexity by one. We obtain a drawing of G using
(5n− 11)/3 + 3n− e− 6 = (14n− 3e− 29)/3 arcs.

Improved bound. We may do slightly better by find-
ing a “good” triangulation, using the property that
at most two arcs at every vertex continue: one for
the horizon and one for Tn. We reduce the neces-
sary geometric primitives by picking a single vertex
on every face and connecting all chords to that par-
ticular vertex. (We may even further save on com-

plexity by selecting the same vertex for two adjacent
faces.) This saves us an additional max{0, |f | − 5} on
complexity for a face f of size |f |: it needs |f | − 3
chords, but only two of these can increase the com-
plexity on removal. We can thus obtain a complexity
of (14n−3e−29)/3−

∑
f∈G max{0, |f |−5}. In other

words, this approach reduces the complexity upper
bound by R =

∑
f∈G max{0, |f |−5}. Below, we show

that R ≥ max{0, 5n − 3e}, thus implying an overall
upper bound of (14n− 3e− 29)/3−max{0, 5n− 3e}.

If 3e ≥ 5n, all faces may have size 5 and thus R = 0
is possible. We find that (14n− 3e− 29)/3 ≤ (14n−
5n− 29)/3 = 3n− 29/3.

Since sparsity increases the upper bound, we con-
struct a worst-case sparse graph to determine the low-
est value of R. Consider an arbitrary connected graph
G on n vertices with e edges and consider the sizes of
all faces. If there there are two faces f ′ and f ′′ with
|f ′′| < 5 < |f ′|, we can reduce R by one by “reassign-
ing” one chord of f ′ to f ′′. We ignore here whether
the new graph with the given face sizes can actually
be realized. We can also reassign a chord from f ′ to
f ′′ if |f ′′| ≥ |f ′| > 5 without effecting R. Hence, a
worst-case can be obtained if all faces but one have
size at most 5; let f denote this one other face. This
effectively reduces R to max{0, |f | − 5}.

Double counting of edges along faces gives us 2e =∑
f ′∈G |f ′| ≤ |f | + 5(F − 1), where F = 2 + e − n is

the total number of faces in G. Hence, we find that
|f | ≥ 5n−3e+5. For R = max{0, |f |−5} to be equal
to |f | − 5, we need that |f | ≥ 5, which is implied by
3e ≤ 5n. If this is indeed the case, then R is equal to
5n−3e. The upper bound is then (14n−3e−29)/3−
(5n − 3e) = 2e − n/3 − 29/3. Using 3e < 5n we find
that this is at most 2(5n/3)−n/3−29/3 = 3n−29/3.

Theorem 4 Every planar graph admits a circular arc
drawing with at most min{3n, 14n/3−e}−29/3 arcs.
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