
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

A New Modular Parametric Search Framework

Christian Knauer∗ David Kübel† Fabian Stehn∗

Abstract

Parametric search is a technique to develop efficient
deterministic algorithms for optimization problems.
The strategy requires an algorithm for the decision
variant of the problem at hand. Given this decision
algorithm, the strategy can be seen as a black box
that does not really exploit characteristics of the un-
derlying problem: It computes an optimal solution by
keeping track of the values that appear in comparisons
of the decision algorithm.

In this abstract, we present a new parametric search
framework written in Java. We show how parametric
search based algorithms can be implemented and ex-
plored with the framework. It allows to quickly spec-
ify or change crucial functionalities which influence
the specific behaviour (and performance) of the re-
sulting optimization algorithm. We focus on a trans-
parent, simple-to-use, and modular design, and dis-
cuss the implementation of a specific algorithm that
computes an optimal shortcut of a polygonal curve.

1 Introduction

Parametric search is a powerful and fairly general
method to compute the (exact) optimal solution λopt
of an optimization problem P in one variable. Let P
be a minimization problem whose objective function
is monotone, that is, for the decision variant decP of
P there is a value λopt such that decP (λ) = true⇔
λ ≥ λopt. In oder to apply Megiddo’s [6] parametric
search technique, two ingredients are required:

1. A sequential algorithm As that solves decP for
any value λ in Ts time, and

2. a parallel algorithm Ap using k processes, solving
decP for an unknown value of λopt in Tp time.

Ap is an algorithm that uses k (independent) pro-
cesses whose control-flow depends on the outcome of
comparisons. Each comparison can be resolved by re-
lating a value that is derived from the input to the
(unknown) value of λopt. The basic idea is to fol-
low the control-flow of each process until it requires
the solution to such a comparison and to collect these
comparisons in batches (these collected values are usu-
ally called critical values). A batch hence consists of k

∗Institut für Informatik, Universität Bayreuth,
{christian.knauer, fabian.stehn}@uni-bayreuth.de,
†Institut für Informatik, Abteilung I, Universität Bonn,

dkuebel@uni-bonn.de

values, representing k comparisons to λopt. Exploiting
the monotonicity of P , all comparisons of a batch can
be resolved by O (log k) calls to As. After resolving
a batch of critical values, each process can continue
until a new batch of k comparisons is collected and
resolved in the same way.

Throughout this process, an interval I = (λ−,λ+] is
maintained, where λ− is the largest value encountered
so far such that decP (λ−) = false and λ+ is the
smallest value encountered so far with decP (λ+) =
true; this implies that λopt ∈ I. Through the course
of this process, at least one instance of the parallel
algorithm Ap has to carry out a comparison with the
actual optimal value λopt, which implies that λopt will
appear as a critical value. Since P is a minimization
problem, we have that λopt = λ+ after all processes of
Ap terminated. This gives a combined minimization
algorithm C that computes λopt in O(Tp·(k+Ts·log k))
deterministic time; see [6] for details.

1.1 Applications

The technique has been applied to a wide range of
problems. In the field of computational geometry,
e.g., the technique has been used to compute the
Fréchet Distance [2] between two polygonal curves.
Recently, Große et al. [4] showed how to efficiently
compute a diameter-optimal shortcut between ver-
tices of a polygonal curve. Agarwal et al. [1] present
several applications in context of geometric optimiza-
tion.

1.2 Related work

The first implementations of parametric search algo-
rithms are due to Toledo [9] (solving extremal polygon
placement problems) and Schwerdt et al. [8] (comput-
ing the diameter of moving points) roughly twenty
years ago. Van Oostrum and Veltkamp [7] were the
first to provide a general framework, written in C++.
Their framework includes a detailed documentation as
well as two reference implementations to compute the
Median of Lines [6] and the Fréchet distance between
two polygonal curves [2]. They experimented with dif-
ferent sorting algorithms and showed that Quicksort
can replace a parallel sorting network in practice.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



32nd European Workshop on Computational Geometry, 2016

1.3 Contribution

In Chapter 2, we present a new general parametric
search framework. Two (geometric) algorithms that
have been realized in this framework are discussed in
Chapter 3.

The framework can be used as a black box to imple-
ment efficient optimization algorithms (based on de-
cision algorithms) with minimal adaptation effort for
the task at hand. It is designed to provide the capabil-
ity to easily exchange not only the sorting algorithm
(a central component of the parametric search tech-
nique) but also the strategy that is used to solve the
comparisons of a batch, or the scheduler that man-
ages the (simulated) parallel execution of the individ-
ual processes. Standard performance enhancements,
such as “Cole’s trick” [3] are built in along with other
optimizations. Several parameters can be used to fine-
tune the performance of the final algorithm.

From this point of view, our approach is twofold:
On the one hand, the framework can be used as
a black box that merely requires to provide an im-
plementation of the corresponding decision algorithm
and parts of Ap that determine and organize critical
values. On the other hand, it allows a deeper look
“under the hood” of the general mechanism of para-
metric search in order to study, analyse and compare
an algorithm and to gain deeper insight into the orig-
inal problem.

In Chapter 3, we discuss how a recent algorithm
for computing shortcuts has been realized with the
framework, and we show how the framework allows to
study the effect of optimization strategies on the ac-
tual computation times. Numerical effects which may
arise in practical applications are discussed briefly.

2 The Framework

In this section, we describe the general structure of
our framework and discuss where and why it differs
from the reference framework by van Oostrum et al.
[7]. To keep the implementation effort as small as pos-
sible, van Oostrum et al. identify essential parts of the
technique so that certain components can be reused
in different implementations. Their framework pro-
vides Quicksort and Bitonicsort together with an au-
tomated organization of the comparisons in a batch.
The framework encapsulates and hides the scheduling
of comparisons and the management of critical val-
ues. In case that Ap is a parallel sorting algorithm,
it is certainly a benefit to hide all this complexity
which reduces the implementation effort considerably.
If, however, Ap is not a sorting algorithm, the de-
veloper has to use “lower-level facilities for batching
comparisons and suspending/resuming computation”
instead which enforces the use of a rigid mechanism
specified by their framework. This has certain draw-

backs: It forces the developer to scatter code to sched-
uled methods which makes the parallel algorithm even
harder to read, understand or debug. Realizing com-
plex parallel algorithms is considerably more involved
with this design. Moreover, the developer has no
chance to control or influence the parallel steps and
the evaluation of batches separately.

With our framework we offer the chance to hook
into the scheduling or the handling of critical val-
ues, if desired or necessary. Both frameworks share
(conceptually) similar components, e.g., a scheduler,
processes or a decision algorithm. However, the de-
sign of our framework meets additional requirements.
The most striking difference is that we separate the
scheduling component from the management of crit-
ical values. We provide ready-to-use functionalities
to reduce the implementation effort; c.f. Section 2.2.
Among these are different strategies to resolve criti-
cal values of a batch which can be easily exchanged to
study their impact on the overall performance. This
provides an insight into how critical values are pro-
cessed in a certain application and may reveal char-
acteristics of the underlying problem.

The core components of the framework have already
been released online [10]. The code of the whole para-
metric search framework together with the demo ap-
plications will be released as a part of a larger frame-
work within this year.

2.1 Design Choices

Our framework is written in Java and consists of four
components. A single responsibility is assigned to
each component in order to (re-)use or interchange
them independently. In the following, we briefly de-
scribe these components and their role within the
framework.

One component is the serial decision algorithm As

which has to be provided by the developer. The im-
plementation has to support a method to decide decP

for any given value λ ≥ 0. The outcome of a call to
As is a boolean value; either true (if λ ≥ λopt) or
false (if λ < λopt).

The remaining three components constitute the
parallel algorithm Ap. We aim to restrict the ac-
cess to the decision algorithm during the execution
of Ap. Whenever decP needs to be solved for a con-
crete value λ, the component Oracle has to be asked:
In contrast to As, the oracle may also return the value
unknown, implying that λ ∈ I, which forces the call-
ing process to wait. This allows us to delay a single
evaluation of the decision problem and to batch sev-
eral critical values. Of course, at some points during
the execution of Ap it will be necessary to evaluate
the decision problem for (some of) the batched values,
e.g., when Ap has to continue with its next parallel
step. At this point, the oracle will apply a strategy



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

to resolve the comparisons of the current batch.

The flow of control of the parallel algorithm
branches at certain points. This is realized by in-
stances of Process, which allows for pausing and re-
suming, depending on the outcome to the calls to the
oracle.

The component that manages the (virtual) paral-
lel execution of Ap is the Scheduler: It assures that
the oracle and all processes are triggered when nec-
essary. After a certain number of parallel steps, all
processes will terminate; as soon as the last processes
becomes inactive, the scheduler and with it the entire
algorithm will terminate.

2.2 Functionality and Oracle Strategies

With the framework we provide a parallel sorting al-
gorithm based on a bitonic sorting network. It can be
used to implement sorting based parametric search
algorithms. The Scheduler is realized by a simple
serial round-robin strategy. To experiment with dif-
ferent strategies of the Oracle component, we imple-
mented the following strategies:

1. Brute force. This strategy does not store λ and
solves the decision problem, at once. We do not
maintain I. Consequently every request causes
an evaluation of As.

2. Monotonicity. This strategy only exploits the
monotonicity of decP : The decision problem is
only evaluated if λ ∈ I. Otherwise, the outcome
is determined according to the position of λ ac-
cording to I in constant time.

3. Parametric Search. If λ lies in I, we store it in
a list and return unknown. When the oracle is
triggered via the method resolveCollectedValues,
all stored values are resolved in a binary search
fashion as suggested by Megiddo [6].

4. Cole (unweighted). In contrast to the previous
strategy, the oracle evaluates decP only for the
median the of stored values. Afterwards, half
of the critical values can be resolved in constant
time. The corresponding processes are called to
produce additional critical values.

5. Cole (weighted). To guarantee that no processes
has to wait for a result for too long, a critical
value is stored together with a certain weight.
In contrast to the previous strategy, the decision
problem is now evaluated for the weighted half of
the stored values and not just for the median.

Depending on the specific application at hand, other
strategies to handle and resolve batches can be real-
ized or combined with these strategies. As a measure-
ment for the performance we suggest to look at the
total number of evaluations of As.

3 Computing Optimal Shortcuts

In this section we briefly discuss two proof-of-concept
implementations. Due to space limitations, we merely
state the first implementation, the computation of the
Fréchet Distance between two polygonal curves (c.f.
[2]). For this implementation, Bitonicsort has been
chosen to realize the parallel part of the algorithm;
the corresponding decision problem was solved in a
standard fashion via the use of free space diagrams.

The initial motivation that led to the design of
this new framework is the problem of computing a
diameter-optimal shortcut of a polygonal curve: A
shortcut (a non-edge between two vertices of the path)
is considered diameter-optimal if no other shortcut
added to the curve results in a graph with smaller di-
ameter. Große et al. [4] present a parametric search
algorithm for this problem. In contrast to the com-
putation of the Fréchet distance, their approach does
not involve a sorting algorithm for Ap.

Some Details

Let λopt denote the diameter induced by an optimal
shortcut. The main idea of the concrete decision al-
gorithm As is to check for every possible start vertex
s of the shortcut whether there exists a feasible end
vertex e. The vertex range of candidates for e is effi-
ciently restricted through binary searches. As returns
true exactly if a feasible pair (s,e) was found.

Große et al. suggest to implement the decision algo-
rithm in a generic and parallel fashion to get Ap. This
implies that each comparison in a binary search has
to be deduced from the result of the decision problem
at a critical value. For every candidate start vertex
s, the search for a feasible e is independent and can
be assigned to a separate parallel process. Conse-
quently, Cole’s weighting scheme [3] can be applied to
reduce the theoretical worst-case running time by a
log-factor.

We generated 1000 polygonal curves of 210 vertices
each, where the coordinates of the vertices were cho-
sen uniformly at random within a square. For each
curve, we computed the diameter-optimal shortcut us-
ing each of the five oracle strategies discussed above.
As stated earlier, the number of calls to As is used
to measure the performance of the individual strate-
gies. Table 1 lists the outcome of the experiments,
ordered by oracle strategy as discussed in Section 2.2.
As expected, all strategies but the first (brute force),
require a small number of evaluations of As. With
regard to the average number of calls, Strategy 2 per-
forms best by only exploiting the monotonicity of the
decision problem. As the last row of Table 1 reveals,
Strategy 5, known as “Cole’s trick” (which reduces
the theoretical worst-case runtime by a log-factor), re-
quires more calls to the decision problem than Strate-



32nd European Workshop on Computational Geometry, 2016

Strategy of the oracle
1 2 3 4 5

µ ∼ 13,872 19.43 19.66 20.32 20.05
σ ∼ 658 3.88 2.28 1.94 2.96

max 18,538 36 26 25 59
min 12,965 12 12 12 12

Table 1: Experimental results by oracle strategy. µ:
average number of calls to As; σ standard deviation;
max (min): maximum (minimum) number of calls
to As.

gies 2− 4 for some instances.

The fact that Strategy 2 performs well is probably
due to the order in which critical values are computed
by Ap. All distances from the first vertex to other
vertices along the curve are critical values of the first
batch (see [4] for details). Consequently, the interval
I is already narrowed down right after the first batch
has been resolved. The higher number of evaluations
for Cole’s weighing scheme in some instances might be
due to the fact that this strategy calls As for values
of λ that are far from λopt, as critical values of previ-
ous parallel steps are favoured over critical values of
processes that have proceeded further.

It turns out that for the problem of computing an
optimal shortcut, the critical values of the first batch
are the key to achieve a small overall number of eval-
uations. The order in which critical values are com-
puted and resolved plays an important role for the
actual performance of a parametric search algorithm.

3.1 Numerical Issues

As for the built-in components of our framework,
critical values are currently represented as double-
precision numbers. The following problem can arise
when representing critical values as finite-precision
floats: The floating point representation of the op-
timal solution λopt is slightly smaller than the ac-
tual value of λopt. As a consequence, As rejects this
value and it will be stored as the lower bound of
I = (λ−,λ+]. If the algorithm outputs λ+ as sug-
gested above, the error can be huge. To address this
problem, we can perform a final call to As with the
center of I. If the center is a valid solution, we con-
clude that λ− is closer to λopt than λ+.

We are currently working on a solution to integrate
and provide types that allow comparisons with arbi-
trary precision. Note that the general framework does
not depend on specific numerical data-types. The
specification and treatment of critical values has to be
handled by the developer in a concrete application.

4 Conclusion & future work

With the presented framework it is possible to take
a closer look into the details and the specific be-
haviour of parametric search algorithms. Different
oracle strategies allow for quantified experiments un-
der different optimization variants with no additional
implementation effort. The outcome of these exper-
iments might lead to a deeper understanding of the
structure of the underlying problem.

Future versions of the framework might include the
option to trace and visualize critical values through-
out the parallel steps. In case of the shortcut problem,
this would help to study the distribution of critical
values around λopt and to understand under which
conditions which parallel step calls As with the opti-
mal value.

References

[1] Pankaj K. Agarwal, Micha Sharir and Sivan Toledo.
Applications of Parametric Searching in Geometric
Optimization, J. of Algorithms 17(3):292–318, 1994.

[2] Helmut Alt and Michael Godau. Computing the
Fréchet distance between two polygonal curves. Int.
J. of Comp. Geom. & App. 5:75–91, 1995.

[3] Richard Cole. Slowing down sorting networks to ob-
tain faster sorting algorithms. J. ACM 34(1):200–208,
1987.

[4] Ulrike Große, Joachim Gudmundsson, Christian
Knauer, Michiel H. M. Smid and Fabian Stehn.
Fast Algorithms for Diameter-Optimally Augmenting
Paths. Proceedings, Part I, ICALP (1) 2015: 678–
688.

[5] Prosenjit Gupta, Ravi Janardan and Michiel H. M.
Smid. Fast Algorithms for Collision and Proximity
Problems Involving Moving Geometric Objects. Com-
put. Geom. 6: 371-391, 1996.

[6] Nimrod Megiddo. Applying Parallel Computation Al-
gorithms in the Design of Serial Algorithms. J. ACM
30(4): 852–865, 1983.

[7] René van Oostrum and Remco C. Veltkamp. Para-
metric search made practical. Comput. Geom. 28(2-
3): 75–88, 2004.

[8] Jörg Schwerdt, Michiel H. M. Smid and Stefan
Schirra. Computing the Minimum Diameter for Mov-
ing Points: An Exact Implementation Using Para-
metric Search. Proceedings of the Thirteenth Annual
Symposium on Computational Geometry, pages 466-
468, 1997.

[9] Sivan Toledo. Extremal Polygon Containment Prob-
lems and other issues in parametric searching. Mas-
ter’s Thesis, Tel-Aviv University, 1991.

[10] Source Code: Modular Parametric Search Frame-
work (in Java) https://davidkuebel@bitbucket.org/-
davidkuebel/modularparametricsearchframework.git


