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An Improved Bound for Orthogeodesic Point Set Embeddings of Trees
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Abstract

In an orthogeodesic embedding of a graph, each edge
is embedded as an axis-parallel polyline that forms
a shortest path in the `1 metric. In this paper we
consider orthogeodesic plane embeddings of trees on
grids. A grid is implicitly defined by a set P ⊂ R2

of points. Denote by ΓP the arrangement induced
by all horizontal and vertical lines that pass through
a point from P . When embedding a graph on the
grid defined by P , vertices are mapped to points from
P and edges are realized as polylines that bend at
vertices of ΓP only. For integers n and ∆, denote by
t∆(n) the minimum number such that for every set
P of t∆(n) points in general position, every tree on
n vertices with vertex degree at most ∆ admits an
orthogeodesic plane embedding on the grid defined
by P . We show t4(n) < 11n/8 and t3(n) < 9n/8,
improving an earlier bound of 3n/2.

1 Introduction

Given a tree T on n vertices, we want to embed T on
an N ×N grid, for some N ≥ n. In fact, we consider
a more restricted setting where possible locations for
vertices are specified in form of a set P ⊂ R2 of N
points. Denote by ΓP the arrangement induced by
all horizontal and vertical lines that pass through a
point from P . To embed a graph on the grid defined
by P , vertices are mapped to points from P and edges
are mapped to arcs that are polylines that bend at
vertices of ΓP only. A point set P is in general position
if no two points have the same x- or y-coordinate.

A common theme in the study of metric graph em-
beddings is the desire to control the length of edges.
For instance, can every edge be realized as a shortest
path? In the Euclidean plane, we arrive at straight
line embeddings. A natural counterpart of these em-
beddings on the grid is called an orthogeodesic em-
bedding. In an orthogeodesic embedding, every edge
is realized as an orthogeodesic arc, that is, a polyline
that consists of axis-parallel line segments and forms
a shortest path in the `1 metric. An L-shaped arc is
an orthogeodesic arc with exactly one bend.
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An embedding is plane if no two arcs share a com-
mon point that is not a common endpoint. Clearly
an orthogeodesic plane embedding can exist only for
trees of degree at most four. As it is straightforward
to find orthogeodesic embeddings for paths, the only
interesting cases are maximum degree three and max-
imum degree four. For integers n and ∆, denote by
t∆(n) the minimum number such that for every set
P of t∆(n) points in general position, every tree on
n vertices with degree at most ∆ admits an ortho-
geodesic plane embedding on the grid defined by P .

Di Giacomo et al. [2] showed that t4(n) ≤ 4n−3 and
t3(n) ≤ 3n/2. The conference version of [2] (which is
reference [1] here) claims that n points are enough for
trees of degree at most three. But the proof turned
out to be incomplete, as commented in the journal
version. Recently, Scheucher [3] showed that t4(n) ≤
b(3n− 2)/2c. We improve these bounds as follows.

Theorem 1 For every set P ⊂ R2 of b(11n − 7)/8c
points in general position and every tree T on n ≥ 3
vertices of degree at most four, T admits an ortho-
geodesic plane embedding on the grid defined by P .

Theorem 2 For every set P ⊂ R2 of b(9n − 4)/8c
points in general position and every tree T on n ≥ 4
vertices of degree at most three, T admits an ortho-
geodesic plane embedding on the grid defined by P .

2 Proofs

For a tree T and i ∈ {1, 2, 3, 4}, denote by di(T ) the
number of degree i vertices in T . As a first step we
prove Theorem 1 with a weaker bound of b(3n−2)/2c
points and a tree T on n ≥ 2 vertices.

Proof. The idea is to spend one extra point per ver-
tex of degree three or four. Then we need f(T ) :=
|T | + d3(T ) + d4(T ) points. For n ≥ 2 we have
d1(T ) = 2d4(T )+d3(T )+2. It follows that n = |T | =∑4

i=1 di = 3d4(T )+2d3(T )+d2(T )+2 and, therefore,
f(T ) = n+ (n− 2− d2(T )− d4(T ))/2 ≤ b(3n− 2)/2c.

We inductively prove the following statement from
which the claim follows immediately: For any tree
T on n ≥ 1 vertices, any leaf ` of T , any direction
d of the four axis directions {+x,−x,+y,−y}, and
any set Γ of f(T ) points in general position, there is
an orthogeodesic plane embedding of T on the grid
defined by Γ such that ` is mapped to the extreme
point of Γ in direction d and every edge (no edge for
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n = 1 and one edge, otherwise) connected to ` leaves it
in the opposite direction. (For instance, if ` is mapped
to the point λ with largest x-coordinate, then the only
incident arc leaves λ on the left side.)

The statement is obviously true for n ∈ {1, 2}. For
n ≥ 3 we proceed as follows. Without loss of gener-
ality let d = y. Map ` to the topmost point λ of Γ
(there is no choice, anyway), and consider the unique
child/neighbor p of ` in T . Next subdivide the remain-
ing points of Γ (other than λ) into degT (p) groups. We
distinguish three cases depending on degT (p).
Case 1: If degT (p) ≤ 2, then p is a leaf of T ′ = T \`

and we can directly apply induction to T ′, y, and
Γ \ {λ}. The edge {`, p} can be routed going down
from λ and then turning left or right to the point π
that p is mapped to (Figure 1a).
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(b) degT (p) = 4.

Figure 1: Embedding a vertex p of degree 2 or 4.

Case 2: If degT (p) = 4, then consider the tree T ′ =
T \`. Removal of p splits T ′ into three components A,
B and C. Obtain Γ′ from Γ by removing the topmost
two points. We partition Γ′ into three groups: the
leftmost f(A) points go into a set α, the rightmost
f(C) points go into a set γ, and the remaining f(T )−
2−f(A)−f(C) = |B|+d3(B)+d4(B)+1 = f(B)+1
points in between go into a set β. The plan is to
embed A on α, B ∪ {p} on β, and C on γ.

Let π denote the topmost point of β and map p to
π. We use the row of Γ below λ to route the edge
between λ and π, entering λ from below (as required)
and π from above. Now apply induction to three sub-
problems, where the vertex p and its corresponding
point π are included in all of them. Note that p is a
leaf in all of A′ = T ′ \ (B∪C), B′ = T ′ \ (A∪C), and
C ′ = T ′ \ (A ∪ B), and that π is the rightmost point
of α′ = α ∪ {π}, the topmost point of β′ = β, and
the leftmost point of γ′ = γ ∪ {π}. (Columns located
between the rightmost point of α and π, which belong
to β, are ignored for the purpose of handling A′. If
π lies above α, also the rows between the topmost
row of α and the one of π are ignored. Similarly,
some columns and rows are ignored for handling C ′.
Essentially we always consider square grids.)

Obtain inductively an embedding for A′ with p
placed in direction x on α′, for B′ with p placed in
direction y on β′, and for C ′ with p placed in direc-
tion −x on γ′ (Figure 1b). The overlay of these three
embeddings together with the placement of ` at λ and

p at π forms the desired embedding for T : The only
edge connected to π in α′ enters π from the left side,
the only edge connected to π in β′ enters π from be-
low, and the only edge connected to π in γ′ enters π
from the right side. As all edges within each of α′, β′,
and γ′ are orthogeodesic, no two edges from differ-
ent sub-problems interfere with each other. (As the
dotted lines in Figure 1b suggest, we do not know ex-
actly how π is connected to α and γ. But we do know
that π is accessed from one particular direction only,
and so we can rely on the part shown solid, which is
enough to guarantee that these edges do not interfere
with those of the embedding of B′.)

Case 3: If degT (p) = 3, then without loss of gener-
ality let the point of Γ in the row directly below λ be
located to the left of λ. Consider the tree T ′ = T \ `.
Removing p from T ′ splits the tree into two compo-
nents A and B. Let A′ = T ′ \ B and B′ = T ′ \ A
and partition Γ′ = Γ \ {λ} into two groups: the left-
most f(A) points go into a set α and the remaining
f(T )−2−f(A) = |B|+d3(B)+d4(B)+1 = f(B)+1
points go into a set β. Denote the topmost point of α
by φ and embed p at the topmost point π of β.

We distinguish two cases. If π is above φ, then by
assumption π lies to the left of λ. In this case we
route the edge {`, p} to go down from λ and enter π
from the right side (Figure 2a).
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Figure 2: Embedding a degree three vertex at π.

Otherwise, φ is above π and we route the edge {`, p}
to go down from λ and turn in the row of φ to enter
π from above. This is fine, if λ lies to the right of
α (Figure 2b and 3b). But if λ lies to the left of
β, this routing uses part of the row of φ within α,
which then is not available for the embedding of A′

on α′ = α∪ {π}. To be on the safe side, we discard φ
from Γ (Figure 3a).
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Figure 3: If λ is above α, then φ is discarded.

Analogously to Case 2 we inductively obtain em-
beddings for A′ on α ∪ {π} and for B′ on β. �
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In order to improve the bound, let us consider the
case of a degree three vertex p in the construction
more carefully. In Case 3 above we considered three
sub-cases and only in the last one (depicted in Fig-
ure 3a) a grid point needs to be discarded. If in that
case the edge {`, p} can be routed to leave λ on the
left or right side instead of on the bottom side, then
φ can be kept: If the right side of λ is free, then we
route the edge using one bend only (Figure 4a); else
if the left side of λ is free, then we move p from B
to A and move the leftmost point in β to α in order
to map p to φ instead and also route the edge {`, p}
using one bend only (Figure 4b).
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Figure 4: Avoid discarding φ if one side of λ is free.

If ` has degree at most two in the original tree, then
obviously at least one side of λ is free. If ` has degree
four in the original tree, then obviously no side of λ
is free. The situation is less clear in case that ` has
degree three in the original tree.

In the case depicted in Figure 2a, no side of π is free
for embedding on β. But as far as α is concerned, the
top side of π may be regarded as free. Although no
orthogeodesic path from π to any point in α can leave
π on its top side, conceptually the top side is free
regardless. This point of view makes sense, because
in that case λ is located at a corner of Γ and we may
also regard λ as an extreme point on the (say) right
side. The assignment of α and β can then be done
correspondingly with respect to the right side of Γ
(Figure 5) and π can be nicely accessed from the right.
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Figure 5: Switching sides if λ is at a corner.

Similarly, it can be checked that in all cases other
than the one depicted in Figure 2a both α and β can
access λ from at least (typically exactly) one other
side. For instance, in the case depicted in Figure 3a
the embedding on β can access π from the right,

whereas the embedding on α can access π from above:
a geodesic path cannot actually enter π from above,
but it can leave α on its right side in any row above π
and then move down to the row of π once it reaches
the area above β to finally enter π on its left side (Fig-
ure 6a); from the perspective of α—which ignores all
columns in between its right side and π—that looks
like entering π from above. The path can be routed as
described, unless π is the leftmost point and, hence,
top-left corner of β (Figure 6b). But then we can treat
π as leftmost point of β and consider the top side of
π free as far as β is concerned, whereas the bottom
and left side are both accessible for α.

Γ

λ

π

α β

φ×

(a) left or “above”

Γ

λ

π

α β

φ×

(b) left or below

Figure 6: Possible ways for α to access π.

So during our recursive construction we discard a
grid point for each degree four vertex and for certain
degree three vertices. Consider a fixed processing or-
der defined by a starting leaf of the tree. We partition
the degree three vertices into two classes: For a good
vertex v we guarantee that the left or the right side of
the starting point λ is free when processing v. By the
analysis above no point needs to be discarded when
processing a good degree three vertex. In contrast, for
a bad vertex no such guarantee holds. For every bad
vertex v in a subtree we make an extra point available
that can be discarded when processing v. Our goal is
to derive a lower bound for the number of vertices
that we may regard as good.

Proposition 3 The parent of a bad degree 3 vertex
is a degree 4 vertex or a good degree 3 vertex.

Proof. Consider a bad degree 3 vertex and let p be its
parent. Clearly a child of a vertex of degree at most
two is good. Therefore it remains to exclude that p is
a bad degree 3 vertex. When processing a bad degree
3 vertex p, we discard the point φ and ensure that all
children of p are good (cf. Figure 6). �

Proposition 4 If a child of a degree 3 vertex p is a
bad degree 3 vertex, then the other child of v is a good
degree 3 vertex.

Proof. There is only one case where we cannot guar-
antee a free side at the starting point for a child of a
degree three vertex: in Figure 2a, for the child of p in
B to be embedded on β. If the other child of p does
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not have degree three, then we select A to contain the
degree three child c of p, making c good. �

Proposition 5 If a degree 3 vertex v has a child c so
that the subtree rooted at c is a path, then v is good.

Proof. When handling v, we let A be the subtree
rooted at c, to be embedded on the left point set α.
The only problematic case is the one depicted in Fig-
ure 3a, where we have to show how to avoid discarding
φ. Given that A is a path, it can be embedded on α
in a monotone fashion, from right to left: every arc
leaves the parent on the left and enters the child along
the y-direction. In particular, the part of the row of
φ to the right of φ (that is used by the arc between λ
and π) is not touched. �

Propositions 3–5 allow us to classify degree three
vertices during a top-down traversal of T as follows.
Initially, all vertices which Proposition 5 applies to
are good, and the remaining vertices are unclassified.
When encountering a degree four vertex, all its un-
classified degree three children are bad. When en-
countering a good degree three vertex for which both
children are unclassified degree three vertices, one of
the children is bad and the other is good. In all other
cases, an unclassified degree three child is good.

Proof. (of Theorem 1) Let T = (V,E) and denote
di = di(T ). Observe that d1 = 2d4 + d3 + 2. Let
V −3 denote the set of bad degree three vertices in T ,
let V +

3 denote the set of good degree three vertices in
T , and let d−3 = |V −3 | and d+

3 = |V +
3 |. Let W ⊆ V

denote the set of all vertices v ∈ V such that either
v ∈ V −3 or v is a leaf. Denote by F ⊆ E the set of
all edges in T that are incident to at least one vertex
from W . By Propositions 3 and 5 and given n ≥ 3,
every edge in F is incident to exactly one vertex from
W and one vertex from V \ W . Therefore, we can
double count by the endpoints in W to obtain |F | =
3d−3 + d1 = 2d4 + 4d−3 + d+

3 + 2 and by the endpoints
in V \W to obtain |F | ≤ 4d4 +3d+

3 +2d2. Combining
both bounds we get 2d−3 ≤ d4 + d+

3 + d2 − 1.
Setting k = d4 + d−3 , we use n + k grid points for

n = 3d4 + 2d3 + d2 + 2 vertices. Therefore

k =
3

8

(
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3
d4 +

2

3
d−3 − 2d+

3 − d2 − 2

)
≤ 3

8

(
n− 5

3
d+

3 −
2

3
d2 −

7

3

)
≤ 3n− 7

8
.

�

Proof. (of Theorem 2) Define di, V
−
3 , V +

3 , d−3 and
d+

3 as above. If d3 = 0, then T is a path and the
statement is trivial. Hence suppose d3 ≥ 1, which
implies n ≥ 4. We consider T as a directed tree by
orienting all edges away from the root. Let F denote
the set of directed edges (u, v) in T such that u ∈ V −3
and v ∈ V +

3 . We claim that d−3 + |F | ≤ d+
3 − 1.

To prove this claim, define an injective map g : V −3 ∪
F → V +

3 . For a vertex u ∈ V −3 let g(u) be the sibling
of u in T . Such a sibling g(u) exists by Proposition 3
and g(u) ∈ V +

3 by Proposition 4. As a vertex in V +
3

has at most one sibling, g is injective on V −3 .
For an edge e = (u, v) ∈ F set g(e) = v, where

v ∈ V +
3 by definition. As every vertex in V +

3 has
exactly one incoming edge, g is injective on F .

Note that for all vertices in g(V −3 ) the parent is
in V +

3 , whereas for all vertices in g(F ) the parent
is in V −3 . Therefore, g is injective on V −3 ∪ F , as
claimed. It also follows that the highest vertex in V +

3

(closest to the root) is not in g(V −3 ∪F ) and, therefore,
|g(V −3 ∪ F )| ≤ d+

3 − 1.
The claim directly generalizes to the case where F

is the set of directed paths (v0, . . . , vk) in T such that
k ≥ 1, v0 ∈ V −3 , vk ∈ V +

3 , and degT (vi) = 2, for 0 <
i < k. Then Propositions 3 and 5 imply |F | = 2d−3 . In
combination with the claim we obtain 3d−3 ≤ d+

3 − 1.
We use n+d−3 grid points for n = 2d3+d2+2 vertices.
It follows that

d−3 =
1

8

(
n+ 6d−3 − 2d+

3 − d2 − 2
)
≤ 1

8
(n− 4) .

�

3 Conclusions

As an obvious open problem it remains to tighten the
bounds for t3(n) and t4(n). Most notably, it would
be nice to prove or disprove t3(n) = n. No non-trivial
lower bound seems to be known, even for maximum
degree four and if the embedding is restricted to use
L-shaped arcs only.
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