
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

On the Separation of a Polyhedron from Its Single-Part Mold∗

Dan Halperin† Shahar Shamai†

Abstract

Casting is a manufacturing process where liquid mate-
rial is poured into a mold having the shape of a desired
product. After the material solidifies, the product is
pulled out of the mold. We study the case in which
the mold is made of a single part and the object to be
produced is a three-dimensional polyhedron. We give
an algorithm that decides whether a given polyhedron
with n facets can indeed be produced that way, and if
so indicates how to orient the polyhedron in the mold
and in what directions can the product be pulled out
without breaking the mold. Our algorithm runs in
O(n log n) time. The best previous algorithm for this
problem that we are aware of runs in O(n2) time. For
a convex polyhedron we present a linear-time algo-
rithm.

1 Introduction

Casting is a widely-used manufacturing process,
where liquid material is poured into a cavity inside
a mold, which has the shape of a desired product. Af-
ter the material solidifies, the product is taken out
of the mold. Typically a mold is used to manufac-
ture numerous copies of a product, in which case we
need to make sure that the solidified product can be
separated from its mold without breaking it.

The problems that we study here belongs to the
larger topic termed Movable Separability of Sets by
Toussaint [7]. Problems in this area are often
exceedingly challenging from a combinatorial- and
computational-geometry point of view (see, e.g., [6]).
At the same time solutions to these problems are
needed in mold design [1], assembly planning [5], and
3D printing to mention a few application areas.

We focus in this paper on a fairly basic movable-
separability question. We are given a polyhedron P
in R3 with n facets. We do not make any particular
assumptions about the polyhedron besides that it is
a closed regular set, namely it does not have dangling
edges or facets. The mold is box-shaped and the cav-
ity has the shape of P such that one of P ’s facets is

∗This work has been supported in part by the Israel Sci-
ence Foundation (grant no. 1102/11), by the German-Israeli
Foundation (grant no. 1150-82.6/2011), and by the Hermann
Minkowski–Minerva Center for Geometry at Tel Aviv Univer-
sity.
†The Blavatnik School of Computer Science, Tel Aviv Uni-

versity, danha@post.tau.ac.il, shasha94@gmail.com.

the top facet of the cavity. See Figure 1 for an illustra-
tion in 2D. Once the top facet has been determined,
we wish to detect whether there is a direction in which
the solidified object could be pulled out of the mold,
namely to find a direction that has a positive compo-
nent in the positive z-direction and such that P could
be pulled out of the mold without colliding into the
mold. If a direction is found we say that the corre-
sponding top facet is valid, and that the polyhedron
P is castable.

Figure 1: Polygons (light grey) in their molds (darker
grey) and valid pull-out directions.

We address two problems:

All Facets Single Direction (AFSD):
Determine which facets of P can serve as a
valid top facet and for each such facet indicate
one direction in which P can be pulled out of
the mold.

All Facets All Directions (AFAD): Same as
above but for each valid facet indicate all the
directions in which P can be pulled out of the
mold.

Why would anyone bother to solve AFAD and not
suffice with AFSD? There could be advantages to
computing all possible directions. First, it is a more
stable solution if there is a continuum of directions
rather than a single direction of separation. Second,
we could use the availability of many possible direc-
tions to impose some direction-related optimality cri-
teria.

Contribution The current algorithms that we are
aware of [2, Chapter 4] solve AFSD in O(n2), and im-
ply an O(n2 log n) time solution for AFAD. Both solu-
tions rely on handling each candidate facet to be a top
facet separately. Both algorithms, as well as the algo-
rithms that we present below use linear storage space.
Our contribution in this paper is an O(n log n)-time
algorithm for the AFAD problem. We also present an

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



32nd European Workshop on Computational Geometry, 2016

O(n)-time solution to the AFAD problem when the
input polyhedron is restricted to be convex.

2 One Structure for All Facets

Instead of handling each candidate top facet sepa-
rately, as in [2, Chapter 4], we handle all candidate top
facets simultaneously using an arrangement of great
circles on the unit sphere S2. Each point p on S2 rep-
resent a direction in R3—the direction of the vector
from the center of S2 to p. We will use the terms
points and directions on S2 interchangeably.

Let F1, . . . , Fn be the facets of the given polyhe-
dron P . Let ν(Fi) be the normal to the facet Fi

pointing into the polyhedron.
A valid mold is described by Fi as its top facet and

a valid pull-out direction ~d′. Since we wish to argue
about all candidate top facets simultaneously, we will
describe a mold by the pair (Fi, ~d) which should be
interpreted as follows. The top facet of the mold is Fi.
To achieve this, the polyhedron needs to be rotated
such that Fi becomes the top facet. We apply the
same rotation matrix Ri to ~d to obtain a pull-out
direction ~d′ := Ri

~d.

Lemma 1 The pair (Fi, ~d) represents a valid mold

and pull-out direction if and only if (i) ~d · ν(Fi) < 0

and (ii) ∀j 6= i, ~d · ν(Fj) ≥ 0.

Proof. For the case where Fi is the top facet of P ,
this fact is proved in Lemma 4.1 in [2]. It remains to
notice that the Conditions (i) and (ii) are invariant
under rotation. They hold in P ’s given orientation if
and only if they hold when P is rotated such that Fi

becomes the top facet. �

Henceforth, we will call a pair (Fi, ~d) that obeys
the conditions of Lemma 1 a valid pair. Notice that
the actual pull-out direction is Ri

~d, where Ri is the
matrix that rotates P such that Fi becomes the top
facet, or equivalently such that ν(Fi) points vertically
downwards.

Denote by hi the closed hemisphere of directions ~d
on S2 for which ~d · ν(Fi) ≥ 0, and by h̄i the open
complement hemisphere. Let H̄ = {h̄1, . . . , h̄n}. Let
ci denote the boundary great circle of hi, and let C =
{c1, c2, . . . , cn}. Consider the arrangement A(C) on
S2, namely the subdivision of S2 induced by the great
circles in C into cells of dimensions 0, 1 and 2, which
we refer to as vertices, edges, and faces respectively.

Definition 1 The depth of a point p on S2 is the
number of hemispheres in H̄ in which p is contained.

Observation 1 All the points in any fixed cell of the
arrangement A(C) have the same depth.

The key observation leading to our efficient solution
is expressed in the following theorem.

Theorem 2 The polyhedron P is castable with a
single-part mold if and only if the arrangement A(C)
contains a point of depth 1. A cell ξ of depth 1 in
A(C), which is covered by the hemisphere h̄i, repre-

sents a mold whose top facet is Fi and each point ~d in
ξ represents the valid pull-out direction Ri

~d, where Ri

is the orthonormal matrix that rotates ν(Fi) to point
vertically down (in the negative z direction).

Proof. Let ξ be a cell of depth 1 in A(C) covered

by h̄i, and let ~d be a point in ξ. We establish that
the pair (Fi, ~d) is a valid pair by verifying that the
conditions of Lemma 1 above hold for it.

It remains to show that no point in any cell of dif-
ferent depth can represent a valid pull-out direction
for any top facet. Consider a cell ψ of depth greater
than 1 and a point ~d in it. Let J be the index set of
the hemispheres h̄i that cover ψ: J = {i|~d ∈ h̄i}. One
of the facets Fj , j ∈ J must serve as the top facet for
Condition (i) of Lemma 1 to hold. But then for each
of the remaining facets Fk, k ∈ J, k 6= j Condition (ii)
of the lemma is violated. Finally, if a cell has zero
depth, then no facet can serve as top facet for any
pull-out direction described by points in this cell. �

Remark. Notice that in our setting there cannot be
a face of zero depth in A(C). Similarly, in Lemma 1,
Condition (i) follows from Condition (ii).

Our goal is then to compute the cells of A(C) of
depth 1. We first investigate the overall complexity
of all these cells.

Proposition 3 The overall complexity of the depth-
1 cells in A(C) is O(n).

Proof. We refer to the horizontal great circle of S2 as
the equator. The equator splits S2 into the open lower
hemisphere and the open upper hemisphere. We will
handle each of these three parts of S2 separately.

Assume temporarily that no hemisphere hi has the
equator as it bounding great circle.

We start with the upper hemisphere of S2. Cen-
trally project the intersection of the upper hemisphere
with each of the hemispheres h̄i onto the plane z = 1.
For each h̄i we obtain a halfplane ḡi. Let gi denote
the complementary closed half plane, and `i the line
bounding each of them. Let G, Ḡ, and L be the cor-
responding sets of n elements each. See Figure 2 for
an illustration.

We call a vertex v of the arrangements A(L), which
is the intersection point of two distinct lines in L, a
configuration. We say that such a vertex v is in con-
flict with the halfplane ḡ ∈ Ḡ if v ∈ ḡ. We are in-
terested in counting all the vertices of A(L) that have



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

hi

gi
`i

gj

`j

Figure 2: Central projection of hemispheres onto the
plane z = 1.

exactly one conflict. These will correspond to vertices
of depth 1 in the upper hemisphere of A(C); more gen-
erally the number of conflicts of a configuration is the
depth of the vertex. Let Nk(L) denote the number
of vertices of depth k, and N≤k(L) denote the num-
ber of vertices of depth at most k. Let Nk(n) (resp.
N≤k(n)) denote the maximum Nk(L) (resp. N≤k(L))
over all sets L of n lines. To bound the maximum
number of vertices of depth 1 we use the Clarkson-
Shor framework [3], which asserts that

N≤k(n) = O(kdN0(n/k)) ,

where d is the number of objects in the set that define
a configuration. In our case d = 2 and k = 1.

What we still need to bound is N0(n), namely the
maximum number of configurations with no conflicts
in any set L of n lines. However, this is easy: these
are the vertices on the boundary of the intersection of
the halfplanes in G. Therefore N0(n) = n. It follows
that N≤1 = O(n) as asserted.

Analogous arguments apply to the lower hemi-
sphere.

Next, we consider A(L) restricted to the equator
as a one-dimensional arrangement consisting of ver-
tices and arcs, namely 0- and 1-dimensional cells. It
is not difficult to see that the complexity of the cells
of depth 1 in this arrangement is O(1). There can
be at most four such cells—in a degenerate situa-
tion where there are two pairs of complementary half-
circles, which in turn induce two pairs of antipodal
0-cells of depth 1.

We now relax the assumption that there are no
hemispheres whose bounding circle is the equator.
Notice that the introduction of such hemispheres does
not affect the asymptotic upper bounds derived so far.
There is the possible introduction of a constant num-
ber of extra vertices of depth 1 on the equator. �

Can one compute these faces efficiently? The
Clarkson-Shor framework [3] also gives a randomized

algorithm to compute these faces in expected near-
linear time. However, we will next describe a simple
deterministic algorithm running in O(n log n) time for
that purpose.

3 The Algorithm

We now compute all the valid pairs (Fi, ~d), by com-
puting all the cells of depth 1 in the arrangement
A(C). We handle each of the upper hemisphere, the
equator, and the lower hemisphere separately.

For the upper hemisphere we use the projection de-
scribed above, the set Ḡ of half-planes, and the set L
of their bounding lines. Notice that there is one-to-
one correspondence between the points on the plane
z = 1 and the points of the open upper hemisphere.
Thus once we find the cells of depth 1 in A(L) we
immediately get the desired pairs. Hence we focus on
the plane z = 1.

We subdivide the set Ḡ into the disjoint union of
three subsets: Ḡ1, Ḡ2, and Ḡ3, having their half-
planes above their bounding line, below their bound-
ing line, or having a vertical bounding line, respec-
tively. Let Li be the set of bounding lines of Ḡi, i =
1, 2, 3. Let λi be the number of lines in Li.

Recall the definition of levels in arrangements,
which we will need below. Given a set L of lines in
the plane, we define the level of a point p in the plane
to be the number of lines in L strictly below p [4].
We say that an edge e in the arrangement A(L) is
at level k if there is a point in the interior of e at
level k (and hence all interior points of e are at level
k). The k-level of the arrangement A(L) is the clo-
sure of the union of edges of A(L) that are at level k.
See Figure 3.

Back to the depth-1 faces, we handle the three sets
separately and then merge the results. We start with
Ḡ1. If we restrict our attention to the half-planes in
Ḡ1, the points of depth k in the plane correspond ex-
actly to points in the plane at level k. Thus our goal
is to compute the points at levels 0 and 1. (We need
level 0 as well since we will later merge this result
with the results for the other sets.) We use divide-
and-conquer on the lines in L1. Assume that we have
already computed the points at levels 0 and 1 for each
of the arrangements A(La

1) and A(Lb
1), where La

1 and
Lb
1 are two disjoint subsets of L1 of size λ1/2 each.

The complexity of level 0 in each is obviously O(λ1)
and so is the complexity of level 1 (this is well known;
it follows for example as a special case of Proposi-
tion 3 above). What we actually compute are the lev-
els 0 and 1 of the arrangements, namely two polygonal
lines rather than a planar subdivision. (This will no
longer be true when we merge the final result for Ḡ1

with the results for the other subsets of Ḡ.) There-
fore we can easily carry out the current merge step
by projecting the breakpoints of both levels in each



32nd European Workshop on Computational Geometry, 2016

arrangement onto the x-axis and merging these lists
of projected points into one list. We then handle in
constant time the slab above each interval between
two consecutive breakpoint projections. This way we
obtain the level 0 and level 1 faces of the arrangement
in time O(λ1 log λ1).

Figure 3: Levels in an arrangement of lines.

We operate analogously on the set Ḡ2, and merge
the results with those already computed for Ḡ1 in a
merge step that is similar to the merge step we have
just described for Ḡ1, still keeping the faces of lev-
els 0 and 1. Now, however, we need to maintain a
planar subdivision, say by using a DCEL [2, Chap-
ter 2]. From this point on, we also record with each
cell of depth 1 which is the half-plane that covers it.

Next we compute the relevant faces for Ḡ3. This is
easier and can be carried out in O(λ3) time , resulting
in only a constant number of faces. We omit the de-
tails here. We finally merge this constant size result
with the result of the preceding step in O(n) time.
This concludes the handling of the upper hemisphere
of S2.

The lower hemisphere is handled analogously.
Computing the depth-1 cells on the equator is simpler
yet and can be carried out in O(n) time by an incre-
mental algorithm adding the circular arcs describing
forbidden directions one after the other. At any time
during the algorithm there is a constant number of
arcs of depth 0 and 1.

At all times our algorithm does not require more
than O(n) storage as we keep a constant number of
linear lists (describing levels 0 and 1 of certain ar-
rangements), or a planar subdivision of linear size. In
summary

Theorem 4 Given a polyhedron P with n facets, we
can find in O(n log n) time all the valid pairs (Fi, ~d),

where P can be pulled in direction Ri
~d out of a mold

having Fi as a top facet, and Ri is the matrix that
rotates P such that Fi becomes the top facet. The
algorithm requires linear space.

Finally we state our more efficient algorithm for the
analogous AFAD problem for an arbitrary polygon in
the plane. The proof is omitted for lack of space.

Theorem 5 Given a polygon Q with n edges in the
plane, we can find in O(n) time all the valid pairs of
top edge and pull-out directions. The algorithm uses
only constant-size working storage.

4 Casting Convex Polyhedra

In this section we show how to determine the castabil-
ity of a convex polyhedron more efficiently, still solv-
ing the AFAD problem for this case.

We say that two facets of the input polyhedron P
are neighbors if their closures intersect in an edge.
Denote by Mi the set of neighbors of the facet Fi,
by mi the cardinality of this set, and by Ji the index
set of the facets inMi. The efficient algorithm stems
from the following observation (proof omitted).

Proposition 6 For a convex polyhedron, the pair
(Fi, ~d) represents a valid mold and pull-out direction

iff (i) ~d · ν(Fi) < 0 and (ii) ∀j ∈ Ji, ~d · ν(Fj) ≥ 0.

The algorithm proceeds by fixing a face Fi, com-
puting its edge-neighboring facets and computing the
intersection of allowable directions (half-planes on
z = 1) in O(mi) time, using the order of the neighbors
along the boundary of f . We repeat the procedure for
each facet of P . Notice that mi is in fact the num-
ber of edges on the boundary of Fi. The overall cost
O(mi) over all candidate top facets Fi is O(n) by Eu-
ler’s formula. In summary

Theorem 7 The AFAD problem for a convex poly-
hedron P with n facets is solvable in time O(n).

References

[1] H. Ahn, M. de Berg, P. Bose, S. Cheng, D. Halperin,
J. Matoušek, and O. Schwarzkopf. Separating an ob-
ject from its cast. Computer-Aided Design, 34(8):547–
559, 2002.

[2] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag TELOS, Santa Clara, CA,
USA, 3rd edition, 2008.

[3] K. L. Clarkson and P. W. Shor. Application of random
sampling in computational geometry, II. Discrete &
Computational Geometry, 4:387–421, 1989.

[4] D. Halperin. Arrangements. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 24, pages 529–562.
Chapman & Hall/CRC, 2nd edition, 2004.

[5] D. Halperin, J. Latombe, and R. H. Wilson. A general
framework for assembly planning: The motion space
approach. Algorithmica, 26(3-4):577–601, 2000.

[6] J. Snoeyink and J. Stolfi. Objects that cannot be taken
apart with two hands. Discrete & Computational Ge-
ometry, 12:367–384, 1994.

[7] G. Toussaint. Movable separability of sets. In Com-
putational Geometry. North-Holland Publishing Com-
pany, 1985.


