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Stabbing circles for some sets of Delaunay segments
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Abstract

Let S be a set of n disjoint segments in the plane that
correspond to edges of the Delaunay triangulation of
some fixed point set. Our goal is to compute all the
combinatorially different stabbing circles for S, and
the ones with maximum and minimum radius. We ex-
ploit a recent result to solve this problem in O(n log n)
time in two cases: (i) all segments in S are parallel;
(ii) all segments in S have the same length. We also
show that the problem of computing the stabbing cir-
cle of minimum radius of a set of n parallel segments
of equal length (not necessarily edges of a Delaunay
triangulation) has an Ω(n log n) lower bound.

1 Introduction

The stabbing circle problem is formulated as follows:
Let S be a set of n segments in R2 in general posi-
tion (segments have 2n distinct endpoints, no three
endpoints are collinear, and no four of them are co-
circular). A circle c is a stabbing circle for S if exactly
one endpoint of each segment of S is contained in the
exterior of the closed disk induced by c; see Fig. 1.
The stabbing circle problem consists of (1) reporting
a representation of all the combinatorially different
stabbing circles for S (two circles are combinatorially
different if the sets of endpoints in the exterior of
the corresponding disks are different); and (2) finding
stabbing circles with minimum and maximum radius.

Figure 1: Left: Segment set with a stabbing circle.
Right: Segment set with no stabbing circle.

The stabbing circle problem has antecedents in the
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stabbing line problem, which was solved in optimal
Θ(n log n) time by Edelsbrunner et al. [6]. Other stab-
bing shapes (wedges, isothetic rectangles, etc.) have
also been considered; see [4] for an overview.

The problem of stabbing a set S of n segments in
the plane by a circle can be solved in O(n2) time by a
combination of known results, and this is worst-case
optimal [4]. Recently, we presented an alternative al-
gorithm based on connecting the problem to cluster
Voronoi diagrams [4]. We identified conditions un-
der which the algorithm is subquadratic; these condi-
tions are: (1) the Hausdorff Voronoi diagram and the
farthest-color Voronoi diagram have linear structural
complexity and can be constructed in subquadratic
time (see Section 2 for the definition of these dia-
grams); (2) a technical condition related to the num-
ber of times an edge of the Hausdorff Voronoi diagram
contains centers of combinatorially different stabbing
circles. If the segments in S are parallel, conditions
(1) and (2) are satisfied, and the stabbing circle prob-
lem for S can be solved in O(n log2 n) time.

In this note we continue investigating special in-
stances of segment sets for which the algorithm in [4]
is subquadratic, in order to understand the stabbing
circle problem better. We focus on sets S of disjoint
segments that correspond to edges in the Delaunay
triangulation of a fixed point set. We solve the stab-
bing circle problem in O(n log n) time when all seg-
ments in S are either parallel or have the same length.
We also show an Ω(n log n) lower bound for the prob-
lem of computing the stabbing circle of minimum ra-
dius of a set of n parallel segments of equal length
(not necessarily edges of a Delaunay triangulation).

2 Preliminaries

In what follows, xx′ denotes either a segment in S, or
the pair of its endpoints as convenient.

Definition 1 [5, 9] The Hausdorff Voronoi diagram
of S is a partitioning of R2 into the following regions:

hreg(aa′) = {p ∈ R2 | ∀bb′ ∈ S \ {aa′} :

max{d(p, a), d(p, a′)} < max{d(p, b), d(p, b′)}};
hreg(a) = {p ∈ hreg(aa′) | d(p, a) > d(p, a′)}.

The graph structure of this diagram is HVD(S) =
R2 \

⋃
aa′∈S (hreg(a) ∪ hreg(a′)). An edge of HVD(S)

is pure if it is incident to regions of two distinct seg-
ments.
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Definition 2 [1, 7] The farthest-color Voronoi dia-
gram is a partitioning of R2 into the following regions:

fcreg(aa′) = {p ∈ R2 | ∀bb′ ∈ S \ {aa′} :

min{d(p, a), d(p, a′)} > min{d(p, b), d(p, b′)}};
fcreg(a) = {p ∈ fcreg(aa′) | d(p, a) < d(p, a′)}.

The graph structure of this diagram is FCVD(S) =
R2 \

⋃
aa′∈S (fcreg(a) ∪ fcreg(a′)).

For arbitrary segments, the combinatorial complex-
ity of both diagrams is O(n2) [9, 1]. If the segments
are disjoint, the complexity of HVD(S) is O(n) [5].

Let hreg(·) and fcreg(·) denote the closures of the
respective Voronoi regions.

Definition 3 Given a point p, the Hausdorff disk of
p, denoted Dh(p), is the closed disk centered at p of
radius d(p, a), where p ∈ hreg(a).

Let S be a set of n pairwise disjoint segments in R2

in general position; let S have no stabbing line. In [4]
we presented an algorithm to solve the stabbing circle
problem for S. To state it, we need some notation.

Let e be a pure edge of HVD(S) and let w be a
point in e. In [4] we defined a set type(w), whose
elements might be l̃, r̃, mm, in, and out. The meaning
of type(w) is not essential for this note; it is enough
to point out that type(w) can be found in O(1) time
if w is located in FCVD(S).

The find-change query is defined as follows: Given
two points t, s in e such that type(t) contains r̃ but
not l̃, and type(s) contains l̃ but not r̃, the query
returns a point w in the segment ts such that one
of the following holds: (i) {r̃, l̃} ⊆ type(w); (ii) in ∈
type(w); (iii) out ∈ type(w).

Suppose that e = uv is a portion of the border of
hreg(a) and hreg(b), for aa′, bb′ ∈ S. We say that a
segment cc′ ∈ S \ {aa′, bb′} is of type middle for e if
either c or c′ is contained in Dh(u) \ Dh(v) and the
other endpoint in Dh(v) \Dh(u).

Let m denote the number of pairs formed by a seg-
ment cc′ ∈ S and a pure edge e of HVD(S) such that
cc′ is of type middle for e. We build the results of
Section 3 of this abstract on the following result.

Theorem 1 [4] The stabbing circle problem for S
can be solved in O(THVD(S)+TFCVD(S)+|HVD(S)|Tfc+
|FCVD(S)| log n + mTfc) time, where THVD(S) (resp.,
TFCVD(S)) is the time to compute HVD(S) (resp.,
FCVD(S)), |HVD(S)| (resp., |FCVD(S)|) is the num-
ber of edges of HVD(S) (resp., FCVD(S)), and Tfc is
the time to answer a find-change query.

3 Segments with the Delaunay property

We say that S satisfies the Delaunay property if its
segments correspond to edges of some Delaunay trian-
gulation. Let us assume that S satisfies this property.
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Figure 2: (a) rp ∩ bis(a, a′) = ∅ and Dp ⊂ Dx. (b)
rp ∩ bis(a, a′) = {q} and Dq` ⊂ Dy.

Lemma 2 FCVD(S) is a tree of O(n) complexity.

Proof. We show that FCVD(S) for such a segment
set S is an instance of the farthest abstract Voronoi
diagram (FAVD); the claim then follows automati-
cally from [8]. To prove that FCVD(S) is FAVD,
we consider the nearest-color Voronoi diagram of S,
which reveals the nearest site (segment in S), where
the distance from a point p ∈ R2 to some aa′ ∈ S
is min{d(p, a), d(p, a′)}. We need to prove that the
system of bisectors for farthest/nearest color Voronoi
diagram satisfies the following axioms: (1) each bi-
sector is an unbounded Jordan curve; (2) any two bi-
sectors intersect finite number of times; (3) regions of
the nearest-color Voronoi diagram are (a) non-empty,
(b) path-connected, and (c) cover R2. Note that
the nearest-color Voronoi diagram is related to the
nearest-point Voronoi diagram of all endpoints of S:
the region of aa′ ∈ S in the former diagram is the
union of the regions of a and a′ in the latter.

Our bisector system satisfies axioms (2), (3a) and
(3c) since so does the bisector system of the near-
est/farthest point Voronoi diagram. Further, since
each aa′ ∈ S is an edge of the Delaunay triangula-
tion of all endpoints of S, the regions of a and a′ in
the nearest-point Voronoi diagram are adjacent, thus
their union is path-connected, implying axiom (3b).
A bisector in our system satisfies axiom (1), since it
separates two unions of pairs of adjacent regions in
the diagram of four points. �

The faces of FCVD(S) near infinity coincide with
the faces of the farthest-segment Voronoi diagram of
S, thus, their sequence at infinity can be computed
in O(n log n) time by divide and conquer (and other
methods) [10]. Based on this observation, it is simple
to derive a divide and conquer algorithm for FCVD(S).
(Note that the approach in [8] yields an expected
O(n log n) time algorithm for FCVD(S).)

Lemma 3 FCVD(S) can be constructed in O(n log n)
time and O(n) space.

Let bis(a, b) denote the bisector of a and b.

Lemma 4 For a point p ∈ R2, let rp be the open
ray with origin at p and direction −→ap, where a is the
endpoint of aa′ ∈ S such that p ∈ fcreg(a). Let
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p 6∈ bis(a, a′). If rp ∩ bis(a, a′) = {q}, then fcreg(aa′)
contains the open segment pq, as well as one of the
two (unbounded) portions of bis(a, a′) starting at q.
Otherwise, rp ⊂ fcreg(aa′).

Proof. For any point z ∈ R2, let Dz be the disk
centered at z of radius d(z, a); see Fig. 2.

Suppose that rp does not intersect bis(a, a′). Since
p ∈ fcreg(a), disk Dp contains an endpoint of every
segment in S. For a point x ∈ rp, x 6= p, Dp ⊂ Dx.
Thus Dx contains in its interior an endpoint of every
segment in S\{aa′}, that is, x ∈ fcreg(a) ⊆ fcreg(aa′).

Suppose next that rp intersects bis(a, a′) in a point
q. For any point x ∈ pq, x 6= p, we have x ∈ fcreg(a) ⊂
fcreg(aa′) by the above argument. In particular, disk
Dq contains an endpoint of every segment in S. Point
q breaks bis(a, a′) into two rays ru and r`, which are
respectively above and below q (see Fig. 2b), and aa′

breaks disk Dq into two parts Dqu and Dq` that are
above and below aa′ respectively. (We assume that
aa′ is not vertical, otherwise the above/below rela-
tion can be replaced by left/right.) Observe that, if
fcreg(aa′) does not contain ru (resp., r`), then Dq`

(resp., Dqu) contains an endpoint of some segment in
S \ {aa′}. If fcreg(aa′) contained neither ru nor r`,
there would be an endpoint of a segment in S \ {aa′}
inside Dq`, and an endpoint inside Dqu. A contradic-
tion to aa′ being an edge of the Delaunay triangula-
tion of the set of endpoints of S. �

Lemma 5 FCVD(S) can be preprocessed in
O(n log n) time and O(n) space so that a find-
change query is answered in O(log n) time.

Proof. By Lemma 2 FCVD(S) is a tree, and thus
the centroid decomposition [3] can be built for it, and
used to answer the find-change query. This decom-
position is a (graph-theoretical) balanced tree with
n nodes, one for each vertex of FCVD(S), built in
O(n log n) time by finding the centroid vertex c of the
tree FCVD(S), making it a root, and recursing into the
three connected components of FCVD(S) \ {c}. The
subtree of each node v corresponds to a connected
portion of FCVD(S), adjacent to the vertex v. To per-
form a query, we follow a root-to-leaf path (of length
O(log n)) in this balanced tree, at every node of the
path one of the node’s three subtrees is to be chosen.

We can make a decision related to one node in O(1)
time, thus answering a find-change query in O(log n)
time. Indeed, Lemma 4 if applied to v and each of
the three regions of FCVD(S) incident to v, induces a
decomposition of R2 into three regions of O(1) combi-
natorial complexity, each of which contains one sub-
tree of v in FCVD(S), see Fig. 3a. Out of these three
regions, in constant time we choose the only one that
may contain the answer to the find-change query. �

We next bound the parameter m in Theorem 1.
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Figure 3: (a) S = {aa′, bb′, cc′} (black); FCVD(S)
(gray); the decomposition of R2 induced by its vertex
v (red, dashed); (b) Figure for the proof of Lemma 7.

Consider a pure edge e = uv of HVD(S) separat-
ing hreg(a) and hreg(b), for two segments aa′, bb′ ∈ S.
Then e ⊆ bis(a, b). We assume that segment ab is
vertical with a on top of b, and that ab does not in-
tersect the interior of e (otherwise e could be broken
into two parts, considered separately). For any seg-
ment cc′ ∈ S, we denote its supporting line by `(cc′).

Lemma 6 If cc′ ∈ S is of type middle for S, then
`(cc′) lies either above both aa′, bb′ or below them.

Proof. One endpoint of cc′ is in Dh(u) \Dh(v), and
the other in Dh(v) \Dh(u). These two areas are sep-
arated by the vertical line `(ab), so cc′ is not vertical.

We first prove that it is impossible that a, b, c, c′ are
in convex position with c and c′ not consecutive along
the convex hull of the four points. Assume otherwise.
The center of the circle through a, b and c lies on e;
hence c′ is outside this circle. Thus a and b are adja-
cent in the Delaunay triangulation of a, b, c, c′. Since
this triangulation is plane, c and c′ are not adjacent,
and therefore they are not adjacent in the Delaunay
triangulation of all endpoints of S; a contradiction.

Since c′ (resp., c) is outside the circle through a, b
and c (resp., c′), the convex hull of a, b, c, c′ cannot be
a triangle with c′ (resp., c) in its interior. Hence, a
and b are on the same side of `(cc′). Recall that a′ and
b′ lie in Dh(u) ∩Dh(v). Segment cc′ either does not
intersect Dh(u) ∩Dh(v), or it divides Dh(u) ∩Dh(v)
in two portions, and both a, b lie in one of them. In
both cases, the claim follows. �

Lemma 7 If S satisfies the Delaunay property and
all segments in S are of the same length, then an edge
e of HVD(S) has at most two segments of type middle.

Proof. We show that there is at most one segment
of type middle whose supporting line is above aa′, bb′.
Then the claim follows from Lemma 6.

Suppose for contradiction that cc′, dd′ are segments
of type middle for e such that `(cc′) and `(dd′) lie
above aa′, bb′. A vertical ray shot from a hits both
cc′ and dd′. Assume that it hits cc′ first. Let D denote
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the disk through c, c′, a. See Fig. 3b. Since cc′ is a
Delaunay edge, cc′ and dd′ are pairwise disjoint, and
a and at least one of d, d′ are on opposite sides of cc′,
disk D contains none of d, d′.

We have ∠dad′ > π/2: it is greater than the angle
β formed by the two tangents to Dh(u) and Dh(v) at
a (see blue dashed lines in Fig. 3b) and β ≥ π/2 by
our assumption that segment ab does not intersect e
in its interior. Let s(cc′) be the closed strip formed by
two lines perpendicular to `(cc′) and passing through
c and c′ (tiled area in Fig. 3b). We have: d, d′ are
outside D; d, d′ are separated by `(ab); ∠dad′ > π/2;
and `(dd′) lies above cc′. All this together imply that
d and d′ lie outside s(cc′) and on different sides of it.
Thus d(d, d′) < d(c, c′); a contradiction. �

Recall Theorem 1. By Lemma 5, Tfc = O(log n).
Both TFCVD(S) and THVD(S) are O(n log n), see
Lemma 3 and [4]. If all segments in S are parallel,
then m = O(n) [4]. By Lemma 7, m is also O(n) if
the segments in S have the same length. We conclude:

Theorem 8 If S satisfies the Delaunay property and
either all segments in S are parallel, or all segments in
S are of equal length, then the stabbing circle problem
can be solved in O(n log n) time and O(n) space.

4 Lower bound

We finally prove a lower bound for sets of segments
possibly without the Delaunay property, but with the
other two conditions considered in this note.

Theorem 9 The problem of computing a stabbing
circle of minimum radius for a set of n parallel seg-
ments of equal length has an Ω(n log n) lower bound
in the algebraic decision tree model.

Proof. The reduction, very similar to that of Theo-
rem 6 in [2], is from MAXGAP(X). In our version, the
input X consists of a set of n integers x1, . . . , xn, and
MAXGAP(X) is the problem of finding the maximum
difference between consecutive elements of X.

Without loss of generality, we may assume minX =
1. Let x′1 < x′2 < · · · < x′n be the sorting of the el-
ements of X. Then x′1 = 1, and let M = x′n. We
construct a set S of parallel segments of equal length
as follows: For every xi ∈ X, we add a segment con-
necting point (xi, 0) to (−(M + 1) + xi, 0). Addi-
tionally, we add two segments aa′ and bb′ such that
a = (−1/2, 0), a′ = (−(M + 1)− 1/2, 0), b = (1/2, 0),
and b′ = ((M + 1) + 1/2, 0).

Any stabbing circle for S of minimum radius con-
tains a, b in its interior. Thus the possibilities for
such a stabbing circle are: If the associated disk con-
tains a, b, (x′1, 0), . . . , (x′n, 0), or (−(M+1)+x′1, 0), . . . ,
(−(M+1)+x′n, 0), a, b, then it has diameter M+1/2.

If it contains (−(M + 1) + x′i+1, 0), . . . , (−(M + 1) +
x′n, 0), a, b, (x′1, 0), . . . , (x′i, 0) for i < n, then it has di-
ameter M + 1− (x′i+1 − xi). Since MAXGAP(X) ≥ 1,
the stabbing circles of minimum radius belong to the
last family. Thus MAXGAP(X) is equivalent to find-
ing the stabbing circle for S of minimum radius.

The set S does not satisfy all the assumptions of
this paper, since all endpoints are collinear and the
segments are not pairwise disjoint. We construct a
set S′ obtained from S by translating every segment
vertically by distinct values of at most ε = 1/10. Since
ε is small compared to the difference between distinct
values of diameters of different stabbing circles for S
(which is at least 1/2), a minimum stabbing circle
for S′ corresponds to a minimum stabbing circle for
S which is combinatorially “the same”. This proves
that the lower bound also holds for the more restricted
sets of segments considered in this paper. �
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