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Random Sampling with Removal
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Abstract

Random sampling is a classical tool in constrained
optimization. Under favorable conditions, the opti-
mal solution subject to a small subset of randomly
chosen constraints violates only a small subset of the
remaining constraints. Here we study the following
variant that we call random sampling with removal:
suppose that after sampling the subset, we remove
a fixed number of constraints from the sample, ac-
cording to an arbitrary rule. Is it still true that the
optimal solution of the reduced sample violates only
a small subset of the constraints? The question natu-
rally comes up in situations where the solution subject
to the sampled constraints is used as an approximate
solution to the original problem.

We study random sampling with removal in a gen-
eralized, completely abstract setting where we assign
to each subset R of the constraints an arbitrary set
V (R) of constraints disjoint from R; in applications,
V (R) corresponds to the constraints violated by the
optimal solution subject to only the constraints in R.
Furthermore, our results are parametrized by the di-
mension δ, i.e., we assume that every set R has a sub-
set B of size at most δ with the same set of violated
constraints. This is the first time this generalized set-
ting is studied.

In this setting, we prove matching upper and lower
bounds for the expected number of constraints vio-
lated by a random sample, after the removal of k ele-
ments. For a large range of values of k, the new upper
bounds improve the previously best bounds for LP-
type problems, which moreover had only been known
in special cases. We show that this bound on special
LP-type problems can be derived in the much more
general setting of violator spaces, and with very ele-
mentary proofs.

1 Introduction

On a high level, random sampling can be described as
an efficient way of learning something about a prob-
lem, by first solving a subproblem of much smaller
size. A classical example is the problem of finding the
smallest element in a sorted compact list [2, Problem
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11-3]. Such a list stores its elements in an array, but in
arbitrary order. Additional pointers are used to link
each element to the next smaller one in the list. Given
a sorted compact list of size n, the smallest element
can be found in expected time O(

√
n) as follows: sam-

ple a set of b
√
nc array elements at random. Starting

from their minimum, follow the predecessor pointers
to the global minimum. The key fact is that the ex-
pected number of pointers to be followed is bounded
by
√
n, and this yields the expected runtime.

On an abstract level, the situation can be modeled
as follows. Let H be a set of size n that we can think
of as the set of constraints in an optimization problem,
for example the elements in a sorted compact list. Let
V : 2H → 2H be a function that assigns to each subset
R ⊆ H of constraints a set V (R) ⊆ H \ R. We can
think of V (R) as the set of constraints violated by the
optimal solution subject to only the constraints in R.
In the sorted compact list example, V (R) is the set of
elements that are smaller than the minimum of R.

In this setting, the above “key fact” is a concrete
answer to the following abstract question: Suppose
that we sample a set R ⊆ H of size r ≤ n uniformly
at random. What can we say about the quantity vr,
the expected size of V (R)? What are conditions on
V under which vr is small?

The main workhorse in this context is the Sampling
Lemma [6]. It states that vr = n−r

r+1 ·xr+1, where xr is
the expected size ofX(R) = {h ∈ R : h ∈ V (R\{h})}.
In other words, h ∈ X(R) is a constraint that is not
automatically satisfied if the problem is solved with-
out enforcing it. In the sorted compact list example,
every nonempty set R has one such “extreme” con-
straint, namely its minimum. Consequently, we have
xr+1 = 1, and hence vr = (n − r)/(r + 1). With
r = b

√
nc, vr <

√
n follows. The Sampling Lemma

has many other applications in computational geom-
etry when xr+1 can be bounded [6].

In this paper, we address the following more gen-
eral question in the abstract setting: Suppose that we
sample a set R ⊆ H of size r ≤ n uniformly at ran-
dom, but then we remove a subset KR ⊆ R of a fixed
size k, according to an arbitrary but fixed rule. What
can we still say about the expected size of V (R\KR)?
IfKR is a random subset of R, the expectation is vr−k,
but if KR is chosen by another (deterministic) rule,
then R \KR is no longer a uniformly random subset,
and the Sampling Lemma does not apply.

Our work is originally motivated by chance-
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constrained optimization, see [6] and the explanations
and references therein, but we also believe that the
question is natural and interesting in itself.

A first bound on the change of the expected num-
ber of violated constraints was given in [3] in the case
where (H,V ) is a nondegenerate LP-type problem.
The results are parametrized by the dimension δ (for
definition of dimension see Definition 3 below). LP-
type problems have been introduced and analyzed by
Matoušek, Sharir and Welzl as a combinatorial frame-
work that encompasses linear programming and other
geometric optimization problems [9, 7]. The quantita-
tive result was that under removal of k elements, the
expected number of violated constraints increases by
a factor of δk at most, which is constant if both δ and
k are constant. It was left open whether this factor
can be improved for interesting sample sizes (for very
specific and rather irrelevant values of δ, r, k, it was
shown to be best possible).

In this paper, we improve over the results in [3] in
several respects. In Theorem 6 we show that the in-
crease factor δk can be replaced by log n + k, which
is a vast improvement for a large range of values of k.
Moreover, the new bound neither requires the ma-
chinery of LP-type problems, nor nondegeneracy. It
holds in the completely abstract setting considered
above. In this setting, we can also show that the
bound is best possible for all sample sizes of the form
r = nα, 0 < α < 1. We also show that this bound
is best possible for violator spaces, in the case where
k = Ω(δ log n). In general, for violator spaces the gap
to the lower bound is log n.

Hence, if anything can be gained over the new
bound, additional properties of the violator function
V have to be used. Indeed, for small values of k, the
increase factor in [3] is better than our new bound for
nondegenerate LP-type problems, and most notably,
it does not depend on the problem size n. We show in
Theorem 9 that the same factor can be derived under
the much weaker conditions of a nondegenerate vio-
lator space, and with a much simpler proof, based on
a “removal version” of the Sampling Lemma (Lemma
8). Furthermore the proof of [3] is given for a specific
rule to remove k, whereas our proof works for any
rule.

Intuitively, violator spaces are LP-type problems
without objective function, and they were introduced
to show that many combinatorial properties of LP-
type problems and algorithms for LP-type problems
do not require the objective function at all [5, 1].

In Section 3, Theorem 10 we show tight upper and
lower bounds for the case δ = 1, which shows that the
improved bound for nondegenerate violator spaces is
best possible for all violator spaces. For smaller (and
in particular constant) k, the quest for the best bound
on the increase factor remains open.

What also remains open is the role of nondegen-

eracy. In many geometric situations, nondegeneracy
can be attained through symbolic perturbation and
can therefore be assumed without loss of generality
for most purposes. In the abstract setting, this is
not necessarily true, as there are examples of LP-type
problems for which any “combinatorial perturbation”
increases the dimension [8].

2 Basics and Definitions

Throughout the paper we will work with three combi-
natorial concepts, the LP-type problem, the violator
space and the consistent space.

Definition 1 (LP-type Problems) An LP-type
problem is a triple P = (H,Ω, ω) that satisfies the
following. H is a finite set (the constraints), Ω a
totally ordered set with a smallest element −∞ and
ω : 2H → Ω a function that assigns an objective
function value to G ⊆ H, such that ω(∅) = −∞.
For all F ⊆ G ⊆ H and h ∈ H, it holds that (1)
ω(F ) ≤ ω(G), and (2) if ω(F ) = ω(G) > −∞, then
ω(G ∪ {h}) > ω(G)⇒ ω(F ∪ {h}) > ω(F ). The first
condition is called monotonicity, the second locality.

A constraint h ∈ H \ G is violated by G if ω(G ∪
{h}) > ω(G). We denote the set of violated con-
straints by V (G). The classic example of an LP-type
problem is the problem of computing the smallest en-
closing ball (SEB) of a finite set of points P in Rd [10].
For SEB, the violated constraints of G are exactly the
points lying outside the smallest enclosing ball of G.

Intuitively a violator space is an LP-type problem
without an objective function.

Definition 2 (Violator Space) A violator space is
a pair (H,V ), |H| = n finite and V : 2H → 2H such
that for all F ⊆ G ⊆ H, it holds that (1) G∩V (G) = ∅
and (2) if G∩V (F ) = ∅, then V (G) = V (F ). The first
condition is called consistency, the second locality.

The notion of a violator space is more general than
the LP-type problem, since every LP-type problem
can naturally be converted into a violator space. On
the other hand, not every violator space can be con-
verted into an LP-type problem [5].

Definition 3 Let (H,V ) be a violator space.

1. B ⊆ H is called a basis in (H,V ), if for all F ( B,
B ∩ V (F ) 6= ∅ (or equivalently, V (F ) 6= V (B)).

2. A basis of G ⊆ H is a basis B in (H,V ) such that
B ⊆ G and V (B) = V (G).

3. The combinatorial dimension of (H,V ), denoted
δ := δ(H,V ) is defined by the size of the largest
basis in (H,V ).
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For SEB, a basis of G is a minimal subset of points
with the same enclosing ball of G. In particular, all
points of the basis are on the ball’s boundary. In
d-dimensional space, the combinatorial dimension of
any SEB-instance is at most d+1, since any enclosing
ball can be defined by at most d + 1 points on its
boundary. However, a basis can be smaller than the
combinatorial dimension, and a point set can have
more than one basis: in R2 the set of four corners of
a square has two bases, the two pairs of diagonally
opposite points.

The set of extreme constraints X(G) ⊆ G is defined
by r ∈ X(G)⇔ r ∈ V (G \ {r}).

In the SEB case, h is extreme in G if its removal
allows for a smaller enclosing ball. Therefore h is
necessarily on the boundary of the smallest enclosing
ball, but this is not sufficient. For the case R2, if G
consists of the four points on a circle, then G has no
extreme point.

It is not hard to see that X(G) is the intersection
of all bases of G, hence |X(G)| ≤ δ. To bound the ex-
pected number of violators, the following result from
[6] is known.

Lemma 4 [Sampling Lemma] Let (H,V ) be a vi-
olator space with combinatorial dimension δ. Let
R ⊆ H a u.a.r. set of size r, vr = E[|V (R)|] and
xr = E[|X(R)|]. Then vr = n−r

r+1 · xr+1 ≤ n−r
r+1 · δ.

The Sampling Lemma can be used to argue that
vr is small if the expected number xr+1 of extreme
constraints of a random sample of size r + 1 is small.

Hence in the SEB case every set has at most d+ 1
extreme points and therefore vr ≤ n−r

r+1 · (d + 1). If
d = 2, then the smallest enclosing ball of a random
sample of size

√
n has in expectation at most 3

√
n

points outside.

A violator space (H,V ) is called nondegenerate if
every set G ⊆ H has a unique basis. Note that SEB
it not nondegenerate, since as mentioned in R2, four
points on a circle have two bases.

A consistent space is a violator space without the
locality condition.

Definition 5 (Consistent Spaces) A consistent
space is a pair (H,V ), |H| = n finite and V a
function 2H → 2H such that for all G ⊆ H it holds
that G ∩ V (G) = ∅.

The basis, combinatorial dimension and extreme
constraints of a consistent space can be defined equiv-
alently as in the violator space.

In consistent spaces the first equality vr = n−r
r+1 ·

xr+1 of the Sampling Lemma 4 still holds. However,
in general it does not hold that |X(R)| ≤ δ for all R ⊆
H. One can construct examples where X(R) = R [4].

3 Results

As already introduced in [3] for LP-type problems,
we are interested in sampling with removal. We de-
fine the concept here for the most general case of
consistent spaces. All results will then naturally ex-
tend for violator spaces and LP-type problems. Sup-
pose we sample uniformly at random R ⊆ H of size
r. By some fixed rule Pk, we remove k < r el-
ements of R and obtain a set RPk

of size r − k.
We define VPk

(R) := V (RPk
). Note that in general

(H,VPk
) is not a consistent space. We are interested

in E[|VPk
(R)|], for which we will give several bounds.

In Theorem 6 we give a tight bound for consistent
spaces. In Theorem 9 we give a tight bound for non-
degenerate violator spaces, which is an improvement
to the result given in [3]. It depends on the values of
δ and k whether the bound of Theorem 6 or Theorem
9 is stronger. Finally, in Theorem 10 we give a tight
bound for violator spaces for the case where δ = 1.

Tight Bounds on Consistent Spaces. The following
result is proven by counting, the main argument is,
that very few sets can have a large set of violators,
i.e., Pr[|VPk

(R)| ≥ x] ≤ n−1 for x and n as defined
below. For a full version of the proof see [4, Theorem
10].

Theorem 6 Let (H,V ), with |H| = n, a consistent
space, δ, k, Pk and R with |R| = r ≤ n as above.

E[|VPk
(R)|] ≤ c ·max

{n
r
δ log n,

n

r
k
}

=: x

where c is some suitable constant (e.g. c = 33).

For δ log n = Ω(k) tightness of the bound can be
shown by choosing for every set of size at most δ, a
set of violators of size Θ(nr δ log n) independently and
u.a.r. [4, Lemma 15]. For δ log n = o(k) the bound is
even tight for violator spaces [4, Lemma 17].

Extreme Constraints after Removal. Let (H,V ) be
a violator space of combinatorial dimension δ. In par-
ticular, every set has at most δ extreme constraints.
For a given natural number k, we want to understand
the following quantity:

∆k(H,V ) := max
R⊆X

|{X(R \K) : K ⊆ R, |K| = k}| .

In other words, how many sets of extreme constraints
can we get by removing k elements from some set R?

We obviously have ∆0(H,V ) = 1 for any violator
space (H,V ). Moreover for (H,V ) nondegenerate we
have ∆1(H,V ) ≤ δ + 1. Indeed one can show that if
we remove a non-extreme element x from R, we end
up with the same set X(R \ {x}) = X(R) of extreme
elements, so only in at most δ cases, we will get a
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different set. Note that this does not hold in general
[4]. Continuing with the same argument the following
bound follows (for a full proof see [4]).

Lemma 7 Let (H,V ) be a nondegenerate violator

space. Then ∆k(H,V ) ≤
∑k
i=0 δ

i.

Sampling Lemma after Removal. Let (H,V ) be a
violator space. For R ⊆ H and a natural number k,
we define the following two quantities: Vk(R) = {x ∈
H \ R : x ∈ V (R \ K) for some K ⊆ R, |K| = k}
and Xk(R) = {x ∈ R : x ∈ X(R \ K) for some
K ⊆ R, |K| = k}. Clearly, V (R) = V0(R) and
X(R) = X0(R). Furthermore, we let vr,k = E[Vk(R)]
and similarly xr,k = E[Xk(R)].

Lemma 8 [Sampling Lemma after Removal]

vr,k =
n− r
r + 1

xr+1,k.

The proof goes like the one for the “normal” Sam-
pling Lemma 4 [6]. The main idea is to define a bi-
partite graph on the vertex set

(
X
r

)
∪
(
X
r+1

)
, where we

connect R and R ∪ {x} with an edge if and only if
x ∈ Vk(R). By counting the outgoing edges on both
sides the lemma follows [4]. Again this equality holds
for consistent spaces as well.

Violators after Removal. For R ⊆ H, let KR be
the k-element set removed by Pk, i.e., RPk

= R \
KR. Then E[|VPk

(R)|] ≤ vr,k + k. This follows since
vr,k counts the expected number of violators in H \R
that we can possibly get by removing any set of k
elements and the removed elements in KR can also be
in V (RPk

).

Theorem 9 Let (H,V ) be a nondegenerate violator
space, δ, k, Pk and R with |R| = r ≤ n as above.
Then

E[|VPk
(R)|] ≤ vr,k + k ≤

k+1∑
i=1

δi · n− r
r + 1

+ k.

Proof. By Lemma 8 it suffices to show that
|Xk(R)| ≤

∑k+1
i=1 δ

i. This holds, since by Lemma 7,

at most
∑k
i=0 δ

i many sets of extreme elements can
be obtained by removing k elements from R, and each
of these sets has at most δ elements. �

By [3, Section 7.2], there exists an LP-type problem
and a rule Pk, such that |Xk(R)| = Θ(δk+1), for |R| =
n−1. However, the behavior of the bound is unknown
for general r.

Combinatorial Dimension 1. In the case of violator
spaces it is open whether (or when) the upper bound
of Theorem 6 is tight for k < δ log n. In this case,
there is a gap of up to log n between upper and lower
bounds [4, Lemma 17]. For k = 0 we know a stronger
upper bound of O(n−rr+1 δ) by the Sampling Lemma 4.

For the case δ = 1 one can show that there exists
only one class of violator spaces of dimension 1 [4,
Lemma 21], namely the class of the smallest number
with repetitions violator space, which is defined as fol-
lows: Let |H| = n and H a multiset of [n], i.e., every
element of H is in [n] and there might be repetitions.
For R ⊆ H, let V (R) = {x ∈ H | x < mini∈R i}. Fi-
nally we require that either V (∅) = H or V (∅) = V (i)
for some i ∈ H. In this setting one can prove that
E[|VPk

(R)|] = O(nr k) and that this bound is tight
[4, Theorem 18]. The theorem below follows immedi-
ately.

Theorem 10 Let (H,V ) be a violator space with di-
mension δ = 1. Let k, Pk and R with |R| = r ≤ n as
above. Then E[|VPk

(R)|] = O(nr k), and this bound is
tight.
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