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1-bend Upward Planar Drawings of SP-digraphs
with the Optimal Number of Slopes∗
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Abstract

It is proved that every series-parallel digraph whose
maximum vertex-degree is ∆ admits an upward pla-
nar drawing with at most one bend per edge such that
each segment along each edge has one of ∆ distinct
slopes. This is shown to be worst-case optimal in
terms of the number of slopes. Furthermore, our con-
struction gives rise to drawings with optimal angular
resolution π

∆ .

1 Introduction

The k-bend planar slope number of a family of planar
graphs with maximum vertex-degree ∆ is the min-
imum number of distinct slopes used for the edges
when computing a crossing-free drawing with at most
k > 0 bends per edge of any graph in the family. For
example, if ∆ = 4, a classic result is that every pla-
nar graph has a crossing-free drawing such that every
edge segment is either horizontal or vertical and each
edge has at most two bends (see, e.g., [1]). Clearly
this bound on the number of slopes is optimal. This
result has been extended to values of ∆ larger than
four by Keszegh et al. [5], who prove that d∆

2 e slopes
suffice to construct a planar drawing with at most two
bends per edge for any planar graph.

However if additional geometric constraints are im-
posed on the crossing-free drawing, only a few tight
bounds on the planar slope number are known. For
example, if one requires that the edges cannot have
bends, the best known upper bound on the pla-
nar slope number is O(c∆) (for a constant c > 1)
while a general lower bound of just 3∆ − 6 has been
proved [5]. Tight bounds are only known for outerpla-
nar graphs [6] and subcubic graphs [3], while the gap
between upper and lower bound has been reduced for
planar graphs with treewidth two [8] or three [4]. If
one bend per edge is allowed, Keszegh et al. [5] show
an upper bound of 2∆ and a lower bound of 3

4 (∆−1)
on the planar slope number of the planar graphs with
maximum vertex-degree ∆. In a recent paper, Knauer
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and Walczak [7] lower the upper bound to 3
2 (∆− 1);

in the same paper, it is also proved that a tight bound
of d∆

2 e can be achieved for outerplanar graphs.
In this paper we focus on the 1-bend planar slope

number of directed graphs with the additional require-
ment that the computed drawings are upward, i.e.,
each edge is drawn as a curve monotonically increas-
ing in the y-direction. We recall that upward draw-
ings are a classic research topic in graph drawing, see
e.g. [2]. We show that every series-parallel digraph
G whose maximum vertex-degree is ∆ has 1-bend up-
ward planar slope number ∆. That is, G admits an
upward planar drawing with at most one bend per
edge where at most ∆ distinct slopes are used for the
edges. This is shown to be worst-case optimal in terms
of the number of slopes.

To prove the above results, we first construct a
suitable contact representation of a series-parallel
(di)graph where each vertex is represented as a cross,
i.e. a horizontal segment properly intersected by a
vertical segment (Section 3); then, we transform such
contact representation into a 1-bend (upward) pla-
nar drawing optimizing the number of slopes used in
such transformation (Section 4). Our construction
gives rise to drawings with optimal angular resolution
(i.e. the minimum angle between any two consecutive
edges around a vertex); namely, the angular resolu-
tion is at least π

∆ . Preliminaries are in Section 2. We
conclude with some open problems in Section 5.

2 Preliminaries

A series-parallel digraph (SP-digraph for short) [2] is
a simple planar digraph that has one source and one
sink, called poles, and it is recursively defined as fol-
lows. A single edge is an SP-digraph. The digraph
obtained by identifying the sources and the sinks of
two SP-digraphs is an SP-digraph (parallel composi-
tion). The digraph obtained by identifying the sink
of one SP-digraph with the source of a second SP-
digraph is an SP-digraph (series composition). A re-
duced SP-digraph is a SP-digraph without transitive
edges. The underlying undirected graph of an SP-
digraph is called an SP-graph. An SP-digraph G is
naturally associated with a binary tree T , which is
called the decomposition tree of G. The nodes of T are
of three types, Q-nodes, S-nodes, and P -nodes, rep-
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Figure 1: (a) An SP-graph G and its decomposition
tree. (b) The slope-set S4. (c) The safe-region (dot-
ted) of a cross (when ∆=4).

resenting single edges, series compositions, and par-
allel compositions, respectively. An SP-graph G and
its decomposition tree are shown in Fig. 1(a). The
decomposition tree of G has O(n) nodes and can be
constructed in O(n) time [2].

The slope s of a line ` is the angle that a horizontal
line needs to be rotated counter-clockwise in order to
make it overlap with `. The slope of a segment is the
slope of the supporting line containing it. We denote
by S∆ the set of slopes: si = π

2 +i π∆ (i = 0, . . . ,∆−1)
(see Fig. 1(b)).

3 Cross Contact Representations

Basic definitions. A cross is composed of one hori-
zontal segment and one vertical segment that share an
interior point, the center of the cross. A cross is de-
generate if either its horizontal or its vertical segment
has zero length. The center of a degenerate cross is its
midpoint. A point p of a cross c is an end-point (inte-
rior point) of c if it is an end-point (interior point) of
the horizontal or vertical segment of c. Two crosses
c1 and c2 touch if they share a point p, called contact,
such that p is an end-point of the vertical (horizontal)
segment of c1 and an interior point of the horizontal
(vertical) segment of c2. A cross-contact representa-
tion (CCR) of a graph G, is a drawing γ such that:
(i) Every vertex v of G is represented by a (possibly
degenerate) cross c(v); (ii) All intersections of crosses
are touches, and (iii) Two crosses c(u) and c(v) touch
if and only if G contains the edge (u, v).

We now consider CCRs of digraphs, and define
properties that will be useful to transform the com-
puted CCR into a 1-bend upward drawing of the cor-
responding digraph with few slopes and good angular
resolution. Let γ be a CCR of a digraph G with max-
imum vertex-degree ∆. Let (u, v) be an edge of G
oriented from u to v. Let p be the contact between
c(u) and c(v). The point p is an upward contact if
the following two conditions hold: (a) p is an end-
point of the vertical segment of one of the two crosses
and an interior point of the other cross, and (b) the
center of c(v) is above the center of c(u). A CCR of
a digraph G such that all its contacts are upward is
an upward CCR (UCCR). An UCCR γ is balanced if
for every non-degenerate cross c(u) of γ, we have that
|nl(u) − nr(u)| ≤ 1, where nl(u) (nr(u)) is the num-
ber of contacts on the left (right) of the center of c(u).
Also, let {p1, p2, . . . , pδ} be the δ ≥ 1 contacts along
the horizontal segment of c(u), in this order from the
leftmost one (p1) to the rightmost one (pδ). Let t be
the intersection point between the vertical line passing
through pδ and the line with slope π

2 − π
∆ and passing

through p1. Similarly, let t′ be the intersection point
between the vertical line passing through p1 and the
line with slope π

2 − π
∆ and passing through pδ. The

safe-region of c(u) is the rectangle having t and t′ as
the top-right and bottom-left corner, respectively. See
Fig. 1(c) for an illustration. If δ = 1, the safe-region
degenerates to a point. An UCCR γ is well-spaced if
no two safe-regions intersect each other.

Algorithm overview. In the remainder of this sec-
tion we describe a linear-time algorithm, UCCRDrawer,
that takes as input a reduced SP-digraph G, and com-
putes an UCCR γ of G which is balanced and well-
spaced. The algorithm computes γ through a bottom-
up visit of the decomposition tree T of G. For each
node µ of T , UCCRDrawer computes an UCCR γµ of
the graph Gµ associated with µ such that the follow-
ing properties hold:

P1. γµ is balanced.
P2. γµ is well-spaced.
P3. Let sµ and tµ be the two poles of Gµ. If

µ is a P - or an S-node, then γµ is contained in a
rectangle Rµ such that its bottomost (topmost) side is
the cross representing c(sµ) (c(tµ)), which is therefore
degenerate.

Drawing construction. As already said,
UCCRDrawer computes γ through a bottom-up
visit of the decomposition tree T of G. For each leaf
node µ (which is a Q-node) the associated graph
Gµ consists of a single edge (sµ, tµ). In this case,
we define two possible types of UCCR, γAµ (type A)

and γBµ (type B), of Gµ, as in Figs. 2(a) and 2(b).
Properties P1 – P2 trivially hold in this case, while
property P3 does not apply.
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Figure 2: Illustration for algorithm UCCRDrawer. The
safe-regions are dotted (they are not in scale).

For each non-leaf node µ of T , UCCRDrawer com-
putes the UCCR γµ by suitably combining the (al-
ready) computed UCCRs γν1 and γν2 of the two
graphs associated with the children ν1 and ν2 of µ.
If µ is an S-node of T , we distinguish between the
following cases, where we assume that tν1 = sν2 is the
pole shared by ν1 and ν2.
Case 1. Both ν1 and ν2 are Q-nodes. Then an UCCR
of Gµ is computed by combining γAν1 and γBν2 as in
Fig. 2(c). Properties P1 – P3 trivially hold.
Case 2. ν1 is a Q-node , while ν2 is not (the case
when ν2 is a Q-node and ν1 is not, is symmetric).
We combine the drawing γAν1 of Gν1 and the drawing
γν2 of Gν2 as in Fig. 2(d). Notice that, to combine
the two drawings we may need to scale one of them
so that their widths are the same. To ensure P1,
we move the vertical segment s of c(tν1) = c(sν2) so
that |nl(tν1) − nr(tν1)| ≤ 1. We may also need to
shorten its upper part in order to avoid crossings with
other segments, and to extend its lower part so that
c(sν1) is outside the safe-region of c(tν1) = c(sν2),
thus guaranteeing property P2. Property P3 holds
by construction.
Case 3. If none of ν1 and ν2 is a Q-node, then we
combine γν1 and γν2 as in Fig. 2(e). Also in this case
we may need to scale one of the two drawings so that
their widths are the same. Property P1 holds, as it
holds for γν1 and γν2 . Property P2 may not hold
for c(tν1) = c(sν2). We can ensure P2 by performing
the following stretching operation. Let `a and `b be
two horizontal lines slightly above and slightly below
the horizontal segment of c(tν1) = c(sν2), respectively.
We extend all the vertical segments intersected by `a
or `b until the safe-region of c(tν1) = c(sν2) does not
intersect any other safe-region. Property P3 holds by
construction.

Finally, suppose that µ is a P -node of T , having

ν1 and ν2 as children (recall that neither ν1 nor ν2

is a Q-node, since G is a reduced SP-digraph). We
combine γν1 and γν2 as in Fig. 2(f). We may need to
scale one of the two drawings so that their heights are
the same. Property P1 holds, as it holds for γν1 and
γν2 . To ensure P2, a stretching operation similar to
the one described in Case 3 is possibly performed by
using a horizontal line slightly above (below) the hor-
izontal segment of c(sµ) (c(tµ)). Property P3 holds
by construction.

It is possible to show that algorithm UCCRDrawer

can be implemented to run in linear time. The above
discussion can be used to prove the following.

Lemma 1 Let G be an n-vertex reduced SP-digraph.
Algorithm UCCRDrawer computes a balanced and well-
spaced UCCR γ of G in O(n) time.

4 1-bend Upward Planar Drawings

In this section we first describe how to transform an
UCCR of a reduced SP-digraph into an upward 1-
bend planar drawing that uses the slopes in the slope-
set S∆. We then explain how to deal with general
SP-digraphs.

Let γ be an UCCR of a reduced SP-digraph G and
let c(u) be the cross representing a vertex u of G in γ.
Let p1, . . . , pδ (δ ≥ 1) be the contacts along the hori-
zontal segment of c(u). We assume that these contacts
are ordered such that we first have all the contacts
corresponding to the outgoing edges of u from left to
right, and then we have all the contacts corresponding
to the incoming edges of u from right to left. Let c be
either the center of c(u), if c(u) is non-degenerate, or
pb δ2 c+1 if c(u) is degenerate. Consider the set of lines

`0, . . . , `∆−1, such that `i passes through c and has
slope si ∈ S∆ (for i = 0, . . . ,∆−1). These lines inter-
sect all the vertical segments forming a contact on the
horizontal segment of c(u). In particular, each quad-
rant of c(u) contains a number of lines that is at least
the number of vertical segments touching c(u) in that
quadrant. Since γ is well-spaced, all these intersec-
tions are inside the safe-region of c(u). Hence we can
replace each contact of c(u) with two segments hav-
ing slope in S∆ as shown in Fig. 3(a) and 3(b). More
precisely, each contact pi of c(u) is replaced with two
segments that are both in the quadrant of c(u) that
contains the vertical segment defining pi. This guar-
antees the upwardness of the resulting drawing. Also,
each edge has at most one bend. Namely, each edge
is represented by a single contact between a horizon-
tal and a vertical segment and we introduce one bend
only when dealing with the cross containing the hor-
izontal segment. Finally, Γ is planar. Namely, there
is no crossing in γ and each cross is only modified lo-
cally inside its safe-region which, by the well-spaced
property, is disjoint by any other safe-region.
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Figure 3: (a)-(b) Transforming an UCCR into a 1-
bend drawing. (c) Drawing of a transitive edge. (d)
A SP-digraph requiring at least ∆ slopes in any 1-
bend upward planar drawing.

Using the technique described above, we can com-
pute an 1-bend upward planar drawing with slopes in
the slope-set S∆ for reduced SP-digraphs. We now ex-
plain how to deal with a general SP-digraph G. First,
we change the embedding of G as follows. Let (u, v)
be a transitive edge, and let G′ be the maximal sub-
graph of G having u and v as poles. We change the
embedding of G′ so that (u, v) is the rightmost out-
going edge of u and the rightmost incoming edge of v.
Second, we subdivide (u, v) with a dummy vertex x.
The resulting graph Gr is a reduced SP-digraph and
therefore we can compute an 1-bend upward planar
drawing Γr of Gr as described above. When doing
so, we take care of guaranteeing that the drawings of
(u, x) and (x, v) (for each transitive edge (u, v)) do
not use the horizontal slope (it is not hard to see that
this is always possible). Each transitive edge (u, v) of
G is represented in Γr by a path of two edges (u, x)
and (x, v). If at least one between (u, x) and (x, v)
is drawn with no bend, then it is sufficient to remove
x to obtain a 1-bend drawing of (u, v). If both (u, x)
and (x, v) have one bend, then simply removing the
subdivision vertex would lead to a 2-bend drawing of
(u, v). In this case we have to modify the drawing of
(u, v). Let `u be the straight line passing through u
and the bend of (u, x) and let `v be the straight line
passing through v and the bend of (x, v). We obtain
a 1-bend drawing of (u, v) by placing a single bend at
the intersection point of `u and `v (see Figure 3(c)).
Since we did not use the horizontal slope in the draw-
ing of (u, x) and (x, v) such a point exists. With this
operation, the drawing of (u, v) has been extended to
the right, and it is possible to modify the construction
of the UCCR γ so that (u, v) does not cross any other
edge. The modification of UCCRDrawer is such that
when a P -node is processed, it additionally ensures
the existence of an empty region where (u, v) can be
drawn without crossings. Details are omitted.

We conclude by exhibiting in Fig. 3(d) a family of
SP-digraphs, such that, for every value of ∆, there
exists a graph in this family with maximum vertex-
degree ∆ and that requires at least ∆ slopes in any
1-bend upward planar drawing. Namely, if a graph G

has a source (or a sink) of degree ∆, then it requires
at least ∆− 1 slopes in any upward drawing because
each slope, with the only possible exception of the
horizontal one, can be used for a single edge. In the
graph of Fig. 3(d) however, the edge (s, t) must be
either the leftmost or the rightmost edge of s and t in
any upward drawing. Therefore, if only ∆− 1 slopes
are allowed, such edge cannot be drawn planarly and
with one bend. Thus, the following theorem holds.

Theorem 2 Every n-vertex SP-digraph G with max-
imum vertex-degree ∆ admits a 1-bend upward planar
drawing Γ with at most ∆ slopes and angular resolu-
tion at least π

∆ . These bounds on the number of slopes
and on the angular resolution are worst-case optimal.
Also, Γ can be computed in O(n) time.

Since every SP-graph can be oriented to an SP-
digraph, next corollary is implied by Theorem 2 and
lowers the upper bound for planar graphs in [7].

Corollary 1 The 1-bend planar slope number of SP-
graphs with maximum vertex-degree ∆ is at most ∆.

5 Conclusions and Open Problems

We proved that the 1-bend upward planar slope num-
ber of SP-digraphs with maximum vertex-degree ∆ is
at most ∆ and this is a tight bound. Is the bound of
Corollary 1 also tight? Moreover, can it be extended
to any partial 2-tree?
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