
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Computing the maximum overlap of a disk and
a piecewise circular domain under translation

Narćıs Coll∗ Marta Fort∗ J. Antoni Sellarès∗

Abstract

We present a GPU parallel algorithm for approxi-
mately computing the maximum overlap of a disk and
a piecewise circular domain under translation. We
also provide initial experimental results obtained with
the implementation of our algorithm.

1 Introduction

The continuous maximal coverage problem consists
in siting facilities in the continuous space to maxi-
mize coverage of regional demand. We study the one-
facility case, with the assumption of uniformly dis-
tributed demand and a disk-like service area for the
facility (see Figure 1 for a motivational example).

Figure 1: a) Polygonal domain to be partially covered by circu-
lar sensors; b) Domain partially covered by two circular sensors;
c) Piecewise circular domain not yet covered; d) New sensor
partially covering the piecewise circular domain.

A piecewise circular curve is a finite ordered list
of connected circular arcs and line segments (consid-
ered as circular arcs with infinite radius). The arcs
and line segments are the edges, and the points where
these edges intersect are the vertices of the piecewise
circular curve. A piecewise circular curve is closed if
its first and last vertices coincide, and weakly simple
if some pair of non-adjacent edges may intersect but
the edges do not cross. A piecewise circular region is
a set whose boundary is a closed weakly simple piece-
wise circular curve. A piecewise circular region with
holes is a piecewise circular region from which the
union of the interiors of a finite number of enclosed

∗Departament d’Informàtica, Matemàtica Apli-
cada i Estad́ıstica. Universitat de Girona, Spain,
{coll,mfort,sellares}@ima.udg.edu.

piecewise circular regions, which define the holes, has
been removed. The boundaries of the enclosing piece-
wise circular region and the holes are pairwise disjoint,
and the holes are empty. A piecewise circular domain
is the union of a finite collection of non overlapping
piecewise circular regions with holes.
Next, we formally define the problem to be solved.

Let P be a given piecewise circular domain. For any
point q ∈ R2, denote Dr(q) the disk of center q and
radius r. The goal is to find a location q0 ∈ R2 which
maximizes the area A(q) of the overlap of Dr(q) with
P .

There has been some related work on this problem.
Given two simple polygons P andQ with n andm ver-
tices, respectively, Mount et al. [4] gave an algorithm
to compute their maximum overlap under translation
in O(n2m2) time. Cheong et al. [1] proposed an
algorithm to approximate the maximum overlap us-
ing random sampling techniques. With high proba-
bility the additive error is ε · min{area(P ), area(Q)}
and the running time is O(n+(m2ε−4 log2 m)). More
recently, Cheng and Lam [2] presented an algorithm
to approximate the maximum overlap of two poly-
gons P and Q, built upon the framework of Cheong
et al. [1]. Polygons P and Q may have multi-
ple holes. If n denotes the total number of vertices
in P and Q, the running time of the algorithm is
O(n2ε−3 log1.5 n log(n/ε)). If one of the two polygons
is convex, the additive error with high probability is
ε · area(P ) and the running time can be improved to
O(n logn+ ε−3 log2.5 n log((log n)/ε)).

The prohibitive running times of the existing ap-
proximation algorithms, mainly for small ε values,
motivated us to design a GPU parallel approach to ef-
ficiently find a set of approximate solutions. An initial
version of this paper dealing with polygonal domains
was presented in [3].

2 Overlap area computation

To solve the problem we need an efficient way to com-
pute the area of the overlap between a disk and a
piecewise circular domain. It can be computed as the
area of the overlap between the disk and the outer
components of the domain minus the area of over-
lap between the disk and each one of the holes. Along
this section we provide a way to exactly and efficiently
compute the area A(q) = area(Dr(q)

∩
R) of the over-

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



32nd European Workshop on Computational Geometry, 2016

lap of Dr(q) with a piecewise circular region R with-
out holes. This area A(q) can be computed in time
proportional to the number n of the vertices of R as
follows. The area A(q) is equal to the area of overlap
between Dr(O) and R′, where O represents the origin

and R′ is the region R translated by the vector −−→
Oq.

Taking into account that a circular arc or a segment
intersects a circle in at most two points, the bound-
ary of R′ can be expressed as a closed piecewise curve
B =

∪m−1
i=0 Bi (m ≤ 3n). Each curve Bi connects the

points p′i and p′i+1 which are vertices of R′ or inter-
section points between ∂Dr(O) and the boundary of
R′. Moreover, each Bi satisfies one of the next cases:

Case 1: Bi is a piecewise circular curve exterior to
Dr(O) and its endpoints p′i and p′i+1 are intersec-
tion points.

Case 2: Bi is a segment contained in Dr(O).

Case 3: Bi is a circular arc contained in Dr(O).

Consider now the curve B =
∪m−1

i=0 Bi where Bi is the
radial projection of Bi ontoDr(O) when Bi is exterior
to Dr(O) and Bi otherwise. Observe that the poly-
curve B: 1) is weakly simple; 2) can be continuously
approximated by simple closed curves (see Figure 2);
3) encloses a region whose area equals A(q).

Figure 2: Approximation of B from B.

Thus, the area A(q) can be computed by using
Greens’s theorem as follows:

A(q) =
1

2

∫
B

−ydx+ xdy =
1

2

m−1∑
i=0

Ii ,

where Ii =
∫
Bi

−ydx+ xdy. Next, we explain how to
compute the value of Ii according to the case where
Bi belongs to:
Case 1: Bi is a piecewise circular curve exterior to

Dr(O). Let Ai be the shortest oriented arc on Dr(O)
that connects the point p′i+1 with the point p′i and let
Bi,i be the closed simple curve determined by Bi∪Ai.
Then, Ii can be computed by:

Ii = Ii,i −
∫
Ai

−ydx+ xdy = Ii,i − r2αi ,

where
Ii,i =

∫
Bi,i

−ydx+ xdy ,

and αi denotes the oriented angle between the vectors−−−→
Op′i+1 and

−−→
Op′i.

The result of the integral Ii,i depends on the ori-
entation of Bi,i and on whether the disk Dr(O) is
interior or exterior to Bi,i. Let ni be the number of
intersections between Bi and the half-line with origin

O in the direction of the vector −
−−→
Op′i. According to

ni and αi, there are three cases to consider (Figure
3):
1. ni is odd and αi > 0. Then, Dr(O) is interior

to Bi,i and Bi,i is oriented counterclockwise. Conse-
quently, Ii,i = −2πr2 and Ii = r2(2π − αi).
2. ni is odd and αi < 0. Then, Dr(O) is interior

to Bi,i and Bi,i is oriented clockwise. Consequently,
Ii,i = −2πr2 and Ii = −r2(2π + αi).
3. ni is even. Then, Dr(O) is exterior to Bi,i.

Consequently, Ii,i = 0 and Ii = −r2αi.

Figure 3: Exterior chain cases.

Case 2: Bi is a segment contained in Dr(O). The
segment Bi = Bi can be parameterized by:

p′i + t(p′i+1 − p′i), t ∈ [0, 1] .

Then, it holds:

Ii = det(p′i, p
′
i+1) .

Case 3: Bi is a circular arc contained in Dr(O).
The arc Bi = Bi can be parameterized by:

ci + cos(t)
−−→
cip

′
i + sin(t)

−−→
cip

′
i
⊥, t ∈ [0, βi] ,

where ci is the center of the arc Bi and βi is the

oriented angle between the vectors
−−→
cip

′
i and

−−−→
cip

′
i+1.

Then, it holds:

Ii = det(ci, p
′
i+1 − p′i) + r2βi .

3 Computing the maximum overlap

In this section we describe our strategy to approxi-
mately obtain the maximum overlap of a disk and a



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

piecewise circular domain under translation with an
ϵ-absolute error. In subsection 3.1, we present a basic
approach that samples the minimum bounding box
of the piece circular domain by using a uniform grid.
We improve the approach locally refining the grid in
subsection 3.2.

3.1 Uniform grid solution

Lemma 1 At least a location optimizing A(q) be-
longs to the region delimited by the convex hull
CH(P ) of the piecewise circular domain P and, con-
sequently, it also belongs to the minimum bounding
box of P .

The proof of Lemma 1 can be found in [3].

Lemma 1 allows us to reduce the search space for
finding the maximum area of overlap. First, we sam-
ple the minimum bounding box of the piecewise cir-
cular domain P by using a uniform grid composed of
square cells of side length d. We choose d ≤

√
2r, so

that for each grid cell center c the disk Dr(c) covers
the cell of center c. Then, we compute the area A(c)
for each grid cell center c and pick a center c0 with
maximum area. To ensure that the absolute error be-
tween areas when choosing as optimal grid center c0
instead of the optimal point q0 is smaller than ε, we
need to choose an appropriate side length d smaller
than a threshold value dε. Let us determine dε.
The largest value of the absolute error A(q0)−A(c0)

occurs when the point q0 coincides with a vertex of a
square grid cell. It is bounded by the area of the lune
L(q0) = Dr(q0) \ Dr(c), where c is an arbitrary grid
cell center, because the lune L(q0) is a subregion of
Dr(q0)

∩
P but the lune L(c) = Dr(c) \ Dr(q0) does

not intersect Dr(q0)
∩
P (see Figure 4a). Thus:

A(q0)−A(c0) ≤ A(q0)−A(c) ≤ area(L(q0)) . (1)

In the particular worst-case in which q0 is a ver-
tex of the square grid cell of center c0, taking h =
d(c0, q0) = d/

√
(2) ≤ r and by using Taylor expan-

sion, we have:

area(L(q0)) = 2r2 arcsin

(
h

2r

)
+

h

2

√
4r2 − h2 ≤

≤ 2rh =
√
2dr .

Fixed r and ε ∈ (0, 1], and according to (1), an ε
absolute error can be guaranteed by choosing the side
length dε of a square grid cell as:

dε = min

(√
2r,

ε√
2r

)
,

because, in such a case:

A(q0)−A(c0) ≤ area(L(q0)) ≤
√
2dεr = ε .

Thus, if the bounding box of the polygon P has
dimension a × b, the number of vertices of the regu-
lar grid providing an ε absolute error is (⌈a/dε⌉ +
1)(⌈b/dε⌉+ 1) ∈ O(ab(r/ε)2).

3.2 Adaptive local grid refinement

If we use an initial grid of size dϵ over the entire
bounding box of P we may waste a lot of grid cells in
areas where they are not necessary. It may be com-
putationally demanding in time and memory require-
ments. Using a global refinement method would have
the same problems. Thus, we propose a local grid re-
finement method starting with a coarser grid of side
length d with

√
2r ≥ d ≥ dε. The local grid refine-

ment strategy identifies the cells, called parent cells,
to be refined according to a two-way filtering criterium
that allows us to quickly detect grid cells where it is
not necessary to apply the refinement process because
their points can not be optimal, Lemma 2, or are all
optimal, Lemma 3. After detecting the parent cells,
we determine a new smaller value for d, according
to the desired ε or the maximum number of desired
grid cells used per refinement step. We construct a
new regular grid of child cells on each selected parent
cell and we perform, for each child cell, the process
we followed for the initial grid. This local refinement
process can be repeated as many times as required
until d ≤ dε and the desired accuracy is obtained.
Next, we give the mentioned Lemmas:

Lemma 2 If d ≤ 2
√
2r and A(c0)−A(c) >

√
2dr for

the center c of a grid cell g, then the optimal point q0
does not belong to the cell g.

Proof. From (1) we know that if the cell g of center
c contains q0 the following inequalities are fulfilled:

A(q0)−A(c) ≤ area(L(q0)) ≤
√
2dr . (2)

If A(c0)−A(c) >
√
2dr, then also

A(q0)−A(c) ≥ A(c0)−A(c) >
√
2dr , (3)

thus q0 cannot belong to g because in this case in-
equalities (2) and (3) are in contradiction. �

Lemma 3 Assume that A(c) = area(Dr(c) ∩ P ) =
area(Dr(c)) = πr2, thus Dr(c) ⊆ P and c is an opti-
mal point. If for the center c′ of each one of the eight
cells adjacent to cell g we have A(c′) = πr2, then any
point of the cell g is optimal.

Proof. The union F of the set of all disks of radius
r whose center belongs to the cell g is the r-offset of
the cell g. Consequently, if F ⊆ P , then, Dr(c

′) ⊆ P
for any point c′ belonging to the cell g, thus c′ is
an optimal point. Observe that the union of the eight
disks of radius r centered in the center of the grid cells
adjacent to cell g together with the disk Dr(c) covers
the r-offset F (see Figure 4b)). Thus, in order to have
F ⊆ P it suffices that Dr(c

′) ⊆ P , or equivalently
Dr(c

′) = πr2, for the center c′ of each of the eight
adjacent cells to g. �



32nd European Workshop on Computational Geometry, 2016

c

q0

L(c)

L(q0)

d

h

d

a) b)

Figure 4: a) The maximum error occurs when the optimal point
q0 is a vertex of a cell. b) The union of the nine disks covers
the cell offset.

4 GPU Implementation

To solve the problem in the GPU we have to transfer
the piecewise circular domain to the GPU. We use:
a float array storing the vertex coordinates; three in-
teger values with the number of vertices, of enclosed
components and of holes; an integer array p in which
p[i] = −1 if the edge from vertex vi to vertex vi+1 is
a line segment and p[i] = j ≥ 0 otherwise; and two
extra float arrays with the radii and centers of the cir-
cular arcs, their jth element is the radius and center
of the edge from vi to vi+1 whenever p[i] = j ≥ 0.
The initial overlap areas, corresponding to the cir-

cles centered at a a × b grid with d ≤
√
2r, are com-

puted in parallel by finding one area per thread, the
current A(c0) value is estimated using an atomic max
operation. The threads in a block cooperate to store
the polygon vertices information to shared memory.
If a refinement step is required, we analyze the cells
in parallel using the filtering criteria, parent cells are
marked with a 1 and terminal cells with a 2 or a 0
depending on whether they are or cannot be opti-
mal. It is done by using squared B×B blocks, whose
threads cooperate to transfer the (B + 2) × (B + 2)
potentially required areas to shared memory. After
being marked, the N parent cells are extracted and
a k × k new grid is placed in each one. We take
k = min(32, a, b, kε) in the first step, where the value
32 is due to GPU reasons and kε = d/dε. In the sub-
sequent steps k = min(32, k, kε). Note that at each
refinement step d is divided by k becoming d/k. We
add two extra rows and columns surrounding the k×k
grid, that will never be refined, to be able to properly
use the stop-refining criterium of Lemma 3 at this re-
finement step. Thus, we compute (k + 2) × (k + 2)
areas per parent cell. Finally, the N(k+2)2 areas are
computed in parallel and k× k blocks are used in the
next filtering step, if it is required.

5 Experimental results

We have implemented our algorithms in C++ and
Cuda C and run the experiments using a Inter(R)
Core(TM) i7-4790CPU with a Tesla k40 active GPU.
We have used the piece-wise circular polygon with

holes of 3569 edges and considered the orange circle
of r = 3.6 (km) that are shown in Figure 5.

We can see, represented by colored points, the cell
centers analyzed during the process. The green ones
are the centers of the cells having maximum area, in
this case πr2 ≈ 41 (km2). The blue points are the
other analyzed centers, they are painted in a blue
color gradation according to the overlap area of the
circle centered on them. The darker the point the
smaller the overlap area. The gradual refinement is
clearly seen in the figure as well as some rounding er-
rors in the points surrounding the regions with maxi-
mal area.

Figure 5: Piecewise circular domain with the analyzed grid cells
centers, the optimal locations are marked in green. Initial grid
size=11× 10.

Considering ε = 0.144 (km2) and a 11 × 10 initial
grid, which corresponds to an initial grid cell size of
d = 4.9 (km), three refinement steps are needed until
a grid with cell size of 17 (m) is obtained, the algo-
rithm takes 0.14 (s). By using a finer 352×285 initial
grid, which has d = 211 (m), one refinement step and
0.19 (s) are needed, now the smallest d is of 26 (m).

Acknowledgments

Work partially funded by the TIN2014-52211-C2-2-R
project from MEC, Spain. We also acknowledge NVIDIA
Corporation for the donation of the Tesla K40 GPU.

References

[1] O. Cheong, A. Efrat, S. Har-Peled, Finding a guard
that sees most and a shop that sells most, Discrete &
Computational Geometry 37(4) (2007) 545-563.

[2] S.W. Cheng, C.K. Lam, Shape matching under rigid
motion, Comput. Geom. Theory Appl. 46(6) (2013)
591–603.

[3] N. Coll, M. Fort, J.A. Sellarès, Computing the maxi-
mum overlap of a disk and a polygon with holes under
translation, XVI Encuentros de Geometŕıa Computa-
cional (2015) 57–60.

[4] D.M. Mount, R. Silverman, A.Y. Wu, On the area of
overlap of translated polygons, Computer Vision and
Image Understanding 64(1) (1996) 53–61.


