
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Bottleneck Distances and Steiner Trees in the Euclidean d-Space

Stephan S. Lorenzen Pawel Winter ∗

Abstract

Some of the most efficient heuristics for the Euclidean
Steiner minimal trees in the d-dimensional space,
d ≥ 2, use Delaunay tessellations and minimum span-
ning trees to determine small subsets of geometrically
close terminals. Their low-cost Steiner trees are deter-
mined and concatenated in a greedy fashion to obtain
low cost trees spanning all terminals. The weakness
of this approach is that obtained solutions are topo-
logically related to minimum spanning trees. To ob-
tain better solutions, bottleneck distances are utilized
to determine good subsets of terminals without being
constrained by the topologies of minimum spanning
trees. Computational experiments show a significant
solution quality improvement.

1 Introduction

Given a set of terminals N = {t1, t2, ..., tn} in the
Euclidean d-dimensional space Rd, d ≥ 2, the Eu-
clidean Steiner minimal tree (ESMT) problem asks
for a shortest connected network T = (V,E), where
N ⊆ V . The points in S = V \ N are called Steiner
points. The length |uv| of an edge (u, v) ∈ E is the
Euclidean distance between u and v. The length |T | of
T is the sum of the lengths of the edges in T . T must
be a tree. It is called the Euclidean Steiner minimal
tree and is denoted by SMT(N). Many variants with
important applications in the design of transportation
and communication networks and in the VLSI design
have been investigated. While the ESMT problem is
one of the oldest optimization problems, it remains an
active research area due to its difficulty, many open
questions and challenging applications. The reader is
referred to [3] for the fascinating history of the ESMT
problem.

The ESMT problem is NP-hard [4]. A good ex-
act method for solving problem instances with up to
50.000 terminals in R2 is available [9]. However, no
analytical method can exist for d ≥ 3 [1]. Further-
more, no numerical approximation seems to be able
to solve instances with more than 15-20 terminals [6].
It is therefore essential to develop good quality heuris-
tics for d ≥ 3. Several heuristics have been proposed
in the literature [15, 7, 10]. In particular, the heuristic

∗Dept. of Computer Science, Univ. of Copenhagen,
stephan.lorenzen@gmail.com, pawel@di.ku.dk, full version of
the paper: http://www.diku.dk/˜pawel/bottleneck.pdf

suggested in [10] builds on a R2-heuristic [13]. Both
use Delaunay tessellations and Minimum spanning
trees and are therefore referred to as DM-heuristics.

SMT(N) must have n − 2 Steiner points, each in-
cident with 3 edges [8]. Terminals must be incident
with exactly 1 edge (possible of zero-length). Non-
zero-length edges must meet at Steiner points at an-
gles that are at least 120o. If a pair of Steiner points
si and sj is connected by a zero-length edge, then si
or sj is connected via a zero-length edge to a termi-
nal and the three non-zero-length edges incident with
si and sj must make 120o with each other. Any ge-
ometric network ST(N) satisfying the above degree
and angle conditions is called a Steiner tree. The
underlying undirected graph (where the coordinates
of Steiner points are immaterial) is called a Steiner
topology of N . If ST(N) has no zero-length edges,
then it is called a full Steiner tree. Every Steiner
tree ST(N) can be decomposed into one or more full
Steiner subtrees whose degree one points are either
terminals or Steiner points overlapping with termi-
nals.

A reasonable approach to find a good suboptimal
solution to the ESMT problem is therefore to identify
few subsets N1, N2, ..., Nz, and their low cost Steiner
trees ST(N1),ST(N2), ...,ST(Nz), such that a union
ST(N) of some of them will be a good approximation
of SMT(N).

The Delaunay tessellation of N in Rd is denoted by
DT(N) [2]. It is well-known that a minimum span-
ning tree of N , denoted by MST(N), is a subgraph of
DT(N). A face σ of DT(N) is covered if the subgraph
of MST(N) induced by the corners of σ is a tree.

Let Nσ ⊆ N denote the corners of a face σ of
DT(N). Let ST(Nσ) denote a Steiner tree spanning
Nσ. Let F be a forest whose vertices form a superset
of N . Suppose that the terminals of Nσ are in differ-
ent subtrees of F . The concatenation F ⊕ ST(Nσ) of
F with ST(Nσ) is a forest obtained by adding to F
all Steiner points and all edges of ST(Nσ).

Let T = MST(N). The contraction T 	Nσ of T by
Nσ is obtained by replacing the vertices in Nσ by a
single vertex nσ. Cycles in T 	 Nσ are destroyed by
removing their longest edges.

The DM-heuristic constructs DT(N) and MST(N)
in the preprocessing phase. For corners Nσ of ev-
ery covered face σ of DT(N), a low cost Steiner tree
ST(Nσ) is determined [10]. If full, it is stored in a
priority queue Q ordered by non-decreasing Steiner

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

32nd European Workshop on Computational Geometry, 2016

ratios ρ(ST(Nσ)) = |ST(Nσ)|/|MST(Nσ)|. Greedy
concatenation, starting with the forest F of isolated
terminals in N , is then used to form ST(N).

The weakness of the DM-heuristic is that it relies
on covered faces of DT(N). The Steiner topology
of ST(N) is therefore dictated by the topology of T .
This is a good strategy in many cases but there are
also cases where this will exclude good solutions. Con-

TDM

ρ(TDM) = 0.97665

TDB

ρ(TDB) = 0.96645

Figure 1: Uncovered faces of DT(N) can improve so-
lutions. Edges of T not in Steiner trees are red.

sider for example the two Steiner trees in Fig. 1. Only
covered faces of DT(N) are considered in TDM . By
considering some uncovered faces (shaded), a better
Steiner tree TDB can be obtained.

We wish to detect useful uncovered faces and in-
clude them into the greedy concatenation. However,
some uncovered faces of DT(N) can be harmful in
the greedy concatenation even though they seem to
be useful locally. As illustrated in Fig. 2, use of the
uncovered face σ of DT(N) in R2 with the set of
corners Nσ = {ti, tj , tk} will lead to a Steiner tree
ST(N) longer than T while the ratio ρ(ST(Nσ)) is
lowest among all faces of DT(N).

ti

tj

tk

ti

tj

tk

Figure 2: ρ(ST(Nσ)) for Nσ = {ti, tj , tk} is low but
the inclusion of ST(Nσ) increases its length beyond
|T |.

2 DB-Heuristic in Rd

The bottleneck distance |titj |T between two terminals
ti, tj ∈ N is the length of the longest edge on the path
from ti to tj in T = MST(N). Note that |titj |T =
|titj | if (ti, tj) ∈ T .

The bottleneck minimum spanning tree BT (Nσ) of
a set of points Nσ ⊆ N is defined as the minimum
spanning tree of the complete graph with Nσ as its

vertices and with |titj |T being the cost of an edge
(ti, tj), ti, tj ∈ Nσ. If Nσ is covered by T , then
|BT (Nσ)| = |MST(Nσ)|.

Consider a Steiner tree ST(Nσ) spanning Nσ ⊆
N . Let the bottleneck Steiner ratio βT (ST(Nσ)) =
|ST(Nσ)|/|BT (Nσ)| If Nσ is covered by T , then
βT (ST(Nσ)) = ρ(ST(Nσ)).

The DB-heuristic constructs the Delaunay tessela-
tion DT(N) and uses T to determine Bottleneck dis-
tances. For corners Nσ of each k-face σ of DT(N),
2 ≤ k ≤ d + 1, a low cost Steiner tree ST(Nσ) is
determined using a heuristic [10]. Each full ST(Nσ)
is stored in a priority queue QB ordered by non-
decreasing bottleneck Steiner ratios. If σ is a 1-face,
then ST(Nσ) is the edge connecting the two corners
of σ. Such ST(Nσ) is added to QB only if it is an
edge in T .

Let F be the forest of isolated terminals from N .
A greedy concatenation is then applied repeatedly
until F becomes a tree. Let ST(Nσ) be a Steiner
tree with currently smallest bottleneck Steiner ratio
in QB . If any pair of terminals in Nσ is connected in
F , ST(Nσ) is discarded. Otherwise, F = F ⊕ST(Nσ)
and T = T 	 Nσ, see Fig. 3. Such contraction of T
may reduce bottleneck distances between up to O(n2)
pairs of terminals. Hence, bottleneck Steiner ratios of
some Steiner trees still in QB need to be updated,
preferrably in a lazy fashion, see Section 3.

ti

tj

tk

e1

e2

σ
ti

tj

tk

ST(Nσ)

Figure 3: The insertion of ST (Nσ), Nσ = {ti, tj , tk}

3 Contractions and Bottleneck Distances

As face-spanning Steiner trees are added to F , their
corners are contracted in the current minimum span-
ning tree T . Contractions will reduce bottleneck dis-
tances between some pairs of terminals. As a con-
sequence, bottleneck Steiner ratios of face-spanning
Steiner trees still in QB will increase. A face-spanning
Steiner tree subsequently extracted from QB will not
necessarily have the smallest bottleneck Steiner ratio
unless QB has been rearranged or appropriate lazy
updating is carried out.

Steiner trees of faces of DT(N) are extracted from
QB one by one. A face σ is discarded if some of its

EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

corners are already connected in F . The bottleneck
Steiner ratio βT (ST(Nσ)) of the extracted Steiner tree
ST(Nσ) may have changed since the last time ST(Nσ)
was pushed onto QB . Hence, βT (ST(Nσ)) has to be
recomputed. If it increased, ST(Nσ) is pushed back
onto QB (with the new bottleneck Steiner ratio). If
not, ST(Nσ) is used to update F and to contract T .

A modified version of a dynamic rooted tree [12]
to maintain a changing minimum spanning tree T
(caused by contractions) and to answer bottleneck dis-
tance querries has been used. When using balanced
binary trees to implement dynamic rooted trees, a
bottleneck distance query takes O((log n)2) amortized
time. Since only faces of DT(N) are considered, a
contraction takes O((d log n)2) time.

4 Computational results

The DB-heuristic was compared with the DM-
heuristic. Both Steiner ratios and CPU times were
examined. To get reliable comparisons, they were av-
eraged over several runs. Furthermore, the results in
R2 were compared with the results achieved by the
exact GeoSteiner algorithm [9].

The DM- and DB-heuristics were implemented in
C++ 1 and run on a Lenovo ThinkPad S540 with a 2
GHz Intel Core i7-4510U processor and 8 GB RAM.

Both heuristics were tested on randomly generated
problem instances in Rd, d = 2, 3, ..., 6, as well as
on library problem instances. Randomly generated
instances were points uniformly distributed in Rd-
hypercubes.

The library problem instances consisted of the
benchmark instances from the 11-th DIMACS Chal-
lenge [5]. For comparing the DB-heuristic with the
GeoSteiner algorithm, ESTEIN instances in R2 were
used [5].

The new DB-heuristic outperforms the DM-
heuristic by 0.2−0.3% for d = 2, 0.4−0.5% for d = 3,
0.6−0.7% for d = 4, 0.7−0.8% for d = 5 and 0.8−0.9%
for d = 6. This is a significant improvement for the
ESMT problem as will be seen below, when compar-
ing R2-results to the optimal solutions obtained by
the exact GeoSteiner algorithm [9].

CPU times for the DM- and DB-heuristics for d =
2, 3, ..., 6, are shown in Fig. 4. It can be seen that the
improved quality comes at a cost for d ≥ 4. This is
due to the fact that the DB-heuristic constructs low
cost Steiner trees for all O(ndd/2e) faces of DT(N) [11]
while the DM-heuristic does it for covered faces only.

Fig. 5 shows how DB-, DM-heuristic and
GeoSteiner (GS) performed on ESTEIN instances in
R2. Steiner ratios and CPU times averaged over all
15 ESTEIN instances of the given size, except for

1The DB-heuristic code and instructions on how to run
it can be found at https://github.com/StephanLorenzen/

ESMT-heuristic-using-bottleneck-distances

10 000 20 000

0

0.5

1
d = 2

n

t (sec.)

7 500 15 000

0

5

10

d = 3

n

t (sec.)

1 000 2 000

0

10

20

d = 4

n

t (sec.)

100 200

0

10

20

d = 5

n

t (sec.)

75 150

0

50

100

150

d = 6

n

t (sec.)

Figure 4: CPU times for DM (red) and DB (blue),
d = 2, 3, ..., 6.

n = 10.000 which has only one instance. It can be seen
that the DB-heuristic produces better solutions than
the DM-heuristic without any significant increase of
the CPU time. It is also worth noticing that the DB-
heuristic gets very close to the optimal solutions. This
may indicate that the DB-heuristic also produces high
quality solutions when d > 2, where optimal solutions
are only known for instances with at most 20 termi-
nals.

10 20 30 40 50 60 70 80 90 100

250

500

1000

10000

0.968
0.970
0.972
0.974

n

ρ(ST(N))

10 20 30 40 50 60

70 80 90 100

250

500

1000

10000

10−3

100

103

n

t (sec.)

Figure 5: Averaged ratios and CPU times for ESTEIN
instances in R2. DM (red), DB (blue), GeoSteiner
(green).

The results for ESTEIN instances in R3 are pre-
sented in Fig. 6. The green plot for n = 10 is the av-
erage ratio and CPU time of the exact solutions [14].
Once again, the DB-heuristic outperforms the DM-
heuristic when comparing the quality of solutions.
However, the running times are now up to four times
worse.

The DB-heuristic starts to struggle when d ≥ 4.

32nd European Workshop on Computational Geometry, 2016

10

20 30 40 50 60 70 80 90 100

250

500

1000

10000

0.950

0.955

n

ρ(ST(N))

10 20 30 40 50 60 70 80 90 100

250

500

1000

10000

10−3

10−1

101

n

t (sec.)

Figure 6: Averaged ratios and CPU times for ESTEIN
instances in R3. DM (red), DB (blue), exact (green).

This is caused by the number of faces of DT(N) for
which low cost Steiner trees must be determined. The
DB-heuristic was therefore modified to consider only
faces with less than k terminals, for k = 3, 4, ..., d+ 1.
Fig. 7 shows the performance of this modified DBk-
heuristic for k = 3, 4, ..., 7, on a set with 100 terminals
in R6. Note that DB7 = DB.

DM DB3 DB4 DB5 DB6 DB7

0.905

0.910

0.915

0.920

ρ(ST(N))
Method t

BM 0.4714
DB3 0.6000
DB4 6.0525
DB5 26.2374
DB6 51.3653

DB7 = DB 62.8098

Figure 7: DBk for k = 3, 4, ..., 7, d = 6 and n = 100.

As expected, the DBk-heuristic runs much faster
when larger faces of DT(N) are disregarded. Already
the DB4-heuristic seems to be a reasonable alternative
since solutions obtained by DBk-heuristic, 5 ≤ k ≤ 7
are not significantly better.

5 Summary and conclusion

Computational results show a significant improve-
ment in the quality of the Steiner trees produced by
the DB-heuristic where the topologies of the solutions
are no longer constrained by minimum spanning trees.
Its CPU times are comparable to the CPU times of the
DM-heuristic in Rd, d = 2, 3. It runs slower for d ≥ 4.
However, CPU times can be significantly improved by
skipping larger faces of DT(N). This results in only
small decrease of quality of solutions obtained.

References

[1] C. Bajaj, The algebraic degree of geometric opti-
mization problems, Discrete and Computational
Geometry 3 (1988), 177–191.

[2] M. de Berg, O. Cheong, M. van Krevald, and
M. Overmars, Computational Geometry - Algo-
rithms and Applications (3. ed.), Springer (2008).

[3] M. Brazil, R. Graham, D. Thomas, and
M. Zachariasen, On the history of the Euclidean
Steiner tree problem, Archive for History of Ex-
act Sciences 68 (2014), 327–354.

[4] M. Brazil and M. Zachariasen, Optimal Intercon-
nection Trees in the Plane, Springer (2015).

[5] DIMACS and ICERM, 11th DIMACS Implemen-
tation Challenge: Steiner Tree Problems, http:
//dimacs11.cs.princeton.edu/ (2014).

[6] M. Fampa, J. Lee, and N. Maculan, An overview
of exact algorithms for the Euclidean Steiner tree
problem in n-space, Int. Trans. in OR (2015).

[7] V. L. do Forte, F. M. T. Montenegro, J. A.
de Moura Brito, and N. Maculan, Iterated lo-
cal search algorithms for the Euclidean Steiner
tree problem in n dimensions, Int. Trans. in OR
(2015).

[8] F. K. Hwang, D. S. Richards, and P. Winter, The
Steiner Tree Problem, North-Holland (1992).

[9] D. Juhl, D. M. Warme, P. Winter, and
M. Zachariasen, The GeoSteiner software pack-
age for computing Steiner trees in the plane:
An updated computational study, Proc. of
the 11th DIMACS Implementation Challenge
(2014). http://dimacs11.cs.princeton.edu/

workshop.html

[10] A. Olsen, S. Lorenzen, R. Fonseca, and P. Win-
ter, Steiner tree heuristics in Euclidean d-space,
Proc. of the 11th DIMACS Implementation Chal-
lenge (2014). http://dimacs11.cs.princeton.
edu/workshop.html

[11] R. Seidel, The upper bound theorem for poly-
topes: an easy proof of its asymptotic version,
Comp. Geom.-Theor. Appl. 5 (1995), 115–116.

[12] D. D. Sleator and R. E. Tarjan, A data structure
for dynamic trees, J. Comput. and Syst. Sci. 26,
3 (1983), 362–391.

[13] J. M. Smith, An O(n log n) heuristic for Steiner
minimal tree problems on the Euclidean metric,
Networks 11, 1 (1981), 23–39.

[14] W. D. Smith, How to find Steiner minimal trees
in Euclidean d-space, Algorithmica 7 (1992),
137–177.

[15] B. Toppur and J. M. Smith, A sausage heuris-
tic for Steiner minimal trees in three-dimensional
Euclidean space, J. Math. Model. and Algorithms
4 (2005), 199–217.

