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Abstract

We consider the classical line simplification problem
subject to a given error bound ε but with additional
topology constraints as they arise for example in the
map rendering domain. While theoretically inapprox-
imability has been proven for these problem variants,
we show that in practice one can solve medium sized
instances optimally using an integer linear program-
ming approach and larger instances using an heuristic
approach which for medium-sized real-world instances
yields close-to-optimal results. Our approaches are
evaluated on data sets which are synthetically gener-
ated, stem from the OpenStreetMap project, and the
2014 GIS Cup competition.

1 Introduction

In the classical line simplification problem (CLSP)
we are given a polygonal chain C = p0p1p2 . . . pn with
pi ∈ R2, an error parameter ε > 0 and ask for a sim-
plification of C, that is, indices i1 < i2 < · · · < ik
with 0 < ij < n such that the polygonal chain

C̃ = p0pi1pi2 . . . pikpn is a faithful approximation of
C. Here ’faithful’ means that for every ’shortcut’ seg-
ment sj = pijpij+1 of the simplification the furthest
distance of a point in {pij+1, . . . pij+1−1} to the short-
cut segment sj is at most ε. A natural optimization
goal is to compute a faithful approximation with as
few vertices as possible, that is, minimizing k.

Solving CLSP is of great interest in particular in
the map rendering context. One of the main chal-
lenges for rendering map data on the screen arises
from the abundance of data. Assume we want to ren-
der the road network of Germany on a mobile device
like a tablet. A cross-country Autobahn like the A7
consists of several thousands of individual road seg-
ments. Rendering all of them is certainly a waste of
time when dealing with the screen of a mobile de-
vice. So typically one would simplify the chain of seg-
ments by replacing subsequences of degree-2 nodes
along the A7 by single road segments. Depending
on the screen size and resolution, this can be done
without really affecting the visual quality of the re-
sult. Naturally, this simplification should not intro-
duce self-intersections, so a sensible generalization of
CLSP to the map rendering context (originally when
simplifying country boundaries) is the map simplifi-
cation problem (MSP), where we are given a pla-

Figure 1: A map of Western Europe with inconsis-
tencies after line simplification of country boundaries
(from [1]), courtesy of de Berg et al.

nar subdivision in form of a planar embedding of a
straight-line graph G(V,E), a parameter ε > 0 and
the goal is to solve CLSP for each degree-2 chain of
the graph such that the total number of surviving ver-
tices is minimized without introducing intersections
(within a single degree-2 chain as well as between dif-
ferent degree-2 chains).

Unfortunately, just solving MSP without additional
care might lead to undesired effects, see Figure 1. In
this simplification (right) of a map excerpt of Eu-
rope (left), some cities switched countries or ended
up in the sea. This gives rise to a more general
map simplification problem with topology constraints
(MSTOPOP): Given a planar subdivision as a pla-
nar embedding of a straight-line graph G(V,E), a pa-
rameter ε > 0 and a set of points P ⊂ R2, the goal is
to solve CLSP for each maximal degree-2 chain of the
graph such that the total number of surviving vertices
is minimized, no intersections are introduced, and ev-
ery point p ∈ P remains in the same face as before.

For our map rendering application, MSTOPOP is
the most natural formulation of the respective opti-
mization problem. Nevertheless, to allow for simpler
solution strategies and efficient solution we will define
a more local variant of this problem called MSLOC-
TOPOP in Section 2 (which still turns out to be
theoretically hard to solve and even approximate).

1.1 Related Work

For CLSP there are several known algorithms,
the most popular being the algorithm by Dou-
glas/Peucker [2], which unfortunately does not guar-
antee absence of self-intersections nor optimality (i.e.
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minimum number of surviving points) of the result.
Its worst-case running time is Θ(n2), though better
running times are experienced in practice. The algo-
rithm by Imai/Iri [5] guarantees as a result a mini-
mum number of surviving points, but not absence of
self-intersections. Its running time is O(n3) in its orig-
inal version, but faster variants with O(n2) running
time exist. Estkowski and Mitchell [4] have shown,
that from a theoretical point of view, solving MSP or
MSTOPOP optimally is a hopeless enterprise. They
prove that for MSTOPOP it is NP-hard to obtain an
approximate solution better than within a factor of
n1/5−δ for any δ > 0. Their result carries over to MSP
since topology constraint points do not play a role in
their proof of approximation-hardness. In [1] de Berg
et al. consider heuristic solutions to MSTOPOP and
MSP, yet without a comparison with the respective
optimum solutions. For MSP, an implementation is
available in the CGAL library [6] following [3]. To
our knowledge, no study has been conducted investi-
gating how close to the optimum heuristic solutions
are for MSTOPOP (due to lack of an exact solution).

As a side note, during the GISCup’14 – a compe-
tition held during the ACM SIGSPATIAL conference
2014 – a variant of the problem (without a precision
constraint – i.e., ε =∞) was tackled by several teams.

1.2 Our Contribution

We define a local variant of the map simplification
with topology constraints problem (which theoreti-
cally is still hard to approximate) and derive a re-
spective ILP formulation which can solve instances of
moderate size optimally. We then develop a heuris-
tic algorithm based on constrained triangulations and
local simplification steps which empirically can be
shown to produce close-to-optimal results for mod-
erately sized instances (via comparison to the ILP so-
lution). In contrast to the ILP solution this heuristic
can also be used to solve large instances as they nat-
urally occur in the map rendering domain.

2 Local Topology-Consistency

At first sight one might think that solving MSTOPOP
is exactly what we want for our map rendering appli-
cation. Consider the example in Figure 2(a), where
we have a planar subdivision with two faces – one U-
shaped face bounded by v0v1 . . . v9v0 and an outer face
which also contains a topology constraint point p. For
sufficiently large value of ε, the simplification shown
in 2(b) is indeed a valid simplification according to
MSTOPOP since p still lies in the outer face. This
might be somewhat counterintuitive since p somehow
’switched sides’ (even though topologically it is, of
course, still on the right side). In particular, if we
locally inspect the shortcut v0v3 which replaces the
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Figure 2: Example of two simplifications, that are not
valid alone but only in conjunction with each other.

chain v0v1v2v3 there is indeed a switch of sides (c)
– which is only healed topologically by shortcutting
v5v6v7v8 by v5v8, which also is invalid on its own (d).

We believe that it is not unnatural to demand that
shortcuts locally don’t make points switch sides. To
that end we define the following local criterion to de-
cide whether a shortcut is considered topology pre-
serving.

Definition 1 For given ε > 0 and constraint point
set P , a shortcut u1uk is considered a valid shortcut
for the polygonal chain C = u1u2 . . . uk if

• the distance of ui, 1 < i < k to the segment u1uk
is at most ε.

• the polygon (possibly with self-intersections) de-
fined by the polygonal chain C ′ = u1u2 . . . uku1
does not contain1 a constraint point.

p

q

Figure 3: Example of a possible simplifciation. Point
q would make this simplification locally inconsistent,
whereas point p would allow this simplification. The
interior of the polygon is given by the shaded area.

See Figure 3 for an illustration of this definition.
Armed with this notion of a valid shortcut we can
formally define the map simplification variant that we
will be dealing with in the following.

Definition 2 (MSLOCTOPOP) For a planar sub-
division given as a straight-line embedding of a graph

1With the interior of a (possibly complex) polygon defined
by the even-odd rule. See Figure 3 for an example.
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G(V,E), a set of constraint points P ⊂ R2, and an
ε > 0, the goal of the Map Simplification with LOCal
TOPOlogy constraints Problem (MSLOCTOPOP) is
to simplify degree-2 chains of G using non-intersecting
valid shortcuts such that the total number of remain-
ing vertices is minimized.

As MSLOCTOPOP comprises MSP as a special
case (no topology constraints), the hardness of ap-
proximation result in [4] carries over, hence there is
little hope to find a polynomial-time approximation
algorithm which solves MSLOCTOPOP with an ap-
proximation ratio substantially better than n1/5.

3 An Integer Linear Programming Formulation for
MSLOCTOPOP

As we have seen, even our specialization MSLOC-
TOPOP of MSTOPOP is hard to approximate, yet
using an integer linear programming (ILP) formula-
tion one might be able to obtain optimal solutions for
many instances that occur in practice. We will de-
velop a respective ILP in the following step by step.

Let us first concentrate on a single polygonal chain
Cl = p1p2 . . . pnl

of the planar subdivision where each
pi with 1 < i < nl is a degree-2 node of the subdi-
vision, p1 and pnl

are nodes with degree 6= 2. We
first construct the set Sl := {sl1, sl2, . . . slkl} of valid

shortcuts for Cl. Note that the original edges are also
valid shortcuts and kl ∈ O(n2l ). Essentially we want
to construct a path from p1 to pnl

using as few valid
shortcuts as possible, so we introduce 0-1 variables
xl1, x

l
2, . . . x

l
kl

where xli = 1 denotes that the shortcut

sli should be realized, xli = 0 that it should not be
used. As constraints we demand:∑

slj=(p1,.)

xlj = 1 (1)

∑
slj=(,.pnl

)

xlj = 1 (2)

that is, we select exactly one shortcut from Sl that is
adjacent to p1 and likewise for pnl

. For every other
vertex pi, 1 < i < nl of Cl we want that the number
of incoming shortcuts equals the number of outgoing
shortcuts (in fact both equal to 0 or to 1, but in our
case there is no need to explicitly enforce that):

∀1 < i < nl :
∑

slj=(.,pi)

xlj −
∑

slj=(pi,.)

xlj = 0 (3)

We construct variables and respective constraints
for each polygonal degree-2 chain in the planar sub-
division. Then for every intersecting pair of short-
cuts sli, s

g
j (of the same or different polygonal degree-2

chains) we add a constraint

xli + xgj ≤ 1 (4)

preventing the usage of both shortcuts simultane-
ously. The objective function is simply a minimization
of the sum of all variables

min
∑

xli (5)

MSLOCTOPOP being NP-hard to approximate,
we cannot expect our ILP formulation to be solvable
efficiently for every input instance. Yet, instances oc-
curring in real-world scenarios might well be solvable
with a good ILP solver.

4 A Local Simplification Heuristic

In this section we present a heuristic to solve the
MSLOCTOPOP problem. We iteratively remove sin-
gle points of the subdivision by only inspecting local
neighborhoods, yet preserving validity of the overall
simplification. The basic idea is similar to [3] but also
incorporates topology constraints.

We employ a Constrained Triangulation (CT) with
the points being all vertices of the original subdivision
as well as the constraint points, and the constraining
edges being the edges of the subdivision. Let degG(v)
denote the number the constraining edges adjacent to
a node in the current CT.

Now for a given node v with degG(v) = 2 one can
quickly decide whether it can be removed and re-
placed by a shortcut without violating any topology
constraint or creating intersections. Let v1 and v2 be
the two neighbours of v in the current subdivision.
There are two cases for which we can easily see, that
we may not discard v:

• The nodes v, v1 and v2 form a triangle in the
current planar subdivision. Removing v leads to
a collapse of the 2-dimensional face spanned by
the 3 nodes.

• The distance of v to the segment v1v2 is greater
than ε. Then the shortcut v1v2 is not valid.

If none of these cases applies we also demand that
there exists no point u 6= v1, v2 adjacent (in the tri-
angulation) to v which lies in the triangle 4v1vv2,
otherwise:

• If u is part of the constraint points in the subdi-
vision, the simplification is invalid according to
our local topology-consistency.

• If u is part of the subdivision boundary, the re-
moval of v either introduces an intersection or
changes the orientation of a face.

Given these criteria the complete algorithm is quite
simple. For every point we compute whether it is
removable with respect to these criteria and remove
it if this is the case. This procedure is repeated until
no more points can be removed.
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Figure 4: Hamburg data set, ε = 105.

Note that we have to make sure, that the distance
check is performed with respect to all the points that
have possibly been replaced by a shortcut.

5 Experimental Results

We have compared both solution approaches on syn-
thetic and real-world data, yet due to space restric-
tions we only report on some selected instances. The
experiments were run on a standard laptop with an
Intel Core i5/1.9GHz/12GB RAM. The local sim-
plification heuristic uses the CGAL library [6], the
ILPs were solved using the Gurobi solver. Clang 3.7
with the -O3 flag was used for compilation. From
the OpenStreetMap project we extracted the datasets
HAM – the administrative subdivision of the city
of Hamburg with some POIs as topology constraint
points, see Figure 4 – and GMNY – the coun-
try borders for Germany with all cities and towns
as constraint points. From the GISCup’14 (http:
//mypages.iit.edu/~xzhang22/GISCUP2014/), the
planar subdivisions GIS4 and GIS5 including topol-
ogy constraint points were used.

Table 1 lists the results. For example, for a tol-
erance of ε = 104 and the dataset HAM, the ILP
approach reduces the number of surviving degree-2-
nodes to 992 within 19 seconds. The heuristic ap-
proach, on the other hand takes only 0.4 seconds to
obtain a result with 1219 surviving degree-2-nodes.
So while not as small as the optimum ILP result,
the heuristic result is reasonably close. For the large
GMNY instance, the ILP approach could not deter-
mine a solution within one hour whereas the heuris-
tic produced a solution within 14 seconds. For GIS4
and GIS5, the heuristic also produces solutions pretty
close to the ILP optimum. For the latter two data
sets we also had running times and result sizes of the
runner-up algorithm at the 2014 GISCup – here called
CROSS (we could not get hands on the winning algo-
rithm). Note though, that the objective of the GIS-
Cup was not just minimization of the remaining sub-
division but rather the ratio of removed points per
unit of time. So while being blazingly fast, CROSS

GIS4 GIS5 HAM GMNY

# nodes 26198 25203 10233 217863
# constraints 356 1607 194 97639

ε = 10000
ILP time (s) 296 105 19 -
Heur. time(s) 1.3 1.1 0.4 14
ILP output 348 476 992 -
Heur. output 433 566 1219 ≈11k

ε = 100000
ILP time (s) 419 121 56 -
Heur. time(s) 1.3 1.2 0.4 17
ILP output 88 238 57 -
Heur. output 101 275 67 1864

ε =∞
ILP time (s) 439 130
Heur. time(s) 1.4 1.2
CROSS time(s) 0.01 0.01
ILP output 88 237
Heur. output 100 274
CROSS output 1759 2826

Table 1: Pruning results for our algorithms: running
times and size of the output.

retains a lot more points even compared to our heuris-
tic approach.
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