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Abstract

A perfect straight-line matching M on a finite set P
of points in the plane is a set of segments such that
each point in P is an endpoint of exactly one seg-
ment. M is non-crossing if no two segments in M
cross each other. Given a perfect straight-line match-
ing M with at least one crossing, we can remove this
crossing by a flip operation. The flip operation re-
moves two crossing segments on a point set Q and
adds two non-crossing segments to attain a new per-
fect matching M ′. It is well known that after a finite
number of flips, a non-crossing matching is attained
and no further flip is possible. However, prior to this
work, no non-trivial upper bound on the number of
flips was known. If g(n) (resp. k(n)) is the maximum
length of the longest (resp. shortest) sequence of flips
starting from any matching of size n, we show that
g(n) = O(n3) and g(n) = Ω(n2) (resp. k(n) = O(n2)
and k(n) = Ω(n)).

Van Leeuwen and Schoone showed with the same
argument and the same definition of flip how to trans-
form a Hamilton cycle to a non-crossing Hamilton cy-
cle on a set of n points within O(n3) flips [17]. There-
fore, we do not consider the main result (our upper
bound on g(n)) as a new contribution, because the
used technique is exactly the same.

We want to use these proceedings to draw attention
again on this old problem and hope to stimulate re-
search that will close the gap between the upper and
lower bound.

1 Introduction
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Figure 1: Two crossing segments are replaced by two
non-crossing segments. There are two ways to flip.
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Given 2n points in the plane in general position (no
three points on a line), we define a perfect straight-line
non-crossing matching as a set of n segments such
that each point is incident to exactly one segment
and no two segments intersect. Given 2n points in
the plane, it is well-known that a perfect straight-line
non-crossing matching always exists. One elegant ar-
gument to see this is to start with any perfect straight-
line matching, potentially self-intersecting, and re-
move any crossing by a flip (see Figure 1). Although
the total number of crossings might increase (see Fig-
ure 5), the sum of the length of all the segments de-
creases (see Figure 2). Thus, the process will eventu-
ally end with a perfect non-crossing matching.

Figure 2: The two new edges (dotted) are shorter than
the old edges (solid) since the dashed part to the left
(resp. to the right) of the crossing is longer than the
dotted segment on the left (resp. on the right).

A simpler argument is to take the first two points
with lowest x-coordinate and connect them with a seg-
ment and continue with the remaining points by in-
duction. Contrary to the first argument, this does not
carry over to the bichromatic setting. In the bichro-
matic setting, we are given n red and n blue points
and a bichromatic matching is a matching as above
with the additional property that only segments link-
ing points of different colors are allowed.

Motivated by this old folklore result, we investigate
the question on the maximum and minimum number
of flips that are necessary and sufficient to reach a
straight-line non-crossing matching.

1.1 Preliminaries

From here on, P always denotes a set of 2n points in
the plane and M a perfect straight-line matching on
P . Given two points a and b we denote by seg(a, b)
the segment with endpoints a and b. Given a per-
fect straight-line matching M with at least one cross-
ing, we can remove this crossing by a flip operation.
The flip operation removes any two crossing segments

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



32nd European Workshop on Computational Geometry, 2016

seg(a, b) and seg(c, d) on a point set Q = {a, b, c, d}
and adds two non-crossing segments (seg(a, c) and
seg(b, d)) or (seg(a, d) and seg(b, c)) to attain a new
matching M ′. Matching M is a successor of matching
M ′ if we can construct M from M ′ by a single flip.
We say that M = (M0, . . . ,Mk) is a valid sequence
of matchings, if each matching Mi+1 is a successor of
Mi and Mk is non-crossing. The number k denotes
the length of M. Given a set P of 2n points in the
plane, we define:

f(M) = max{ k : ∃M of length k with M = M0 };

h(M) = min{ k : ∃M of length k with M = M0 }.

Consequently functions g(n) and k(n) are defined as:

g(n) = max{ f(M) : M is a matching on 2n points };

k(n) = max{h(M) : M is a matching on 2n points }.

1.2 Results

We establish the following result:

Theorem 1 ([17]) Let n be a large enough natural
number. Then it holds:

n2 − n
2

=

(
n

2

)
≤ g(n) ≤ n3.

This result immediately carries over to bichromatic
matchings. We conjecture that g(n) = Θ(n2).

Theorem 2 Let n be a large enough natural number.
Then it holds:

n− 1 ≤ k(n) ≤ n2

2
,

for some constants C.

Our proof of Theorem 2 does not carry over to the
bichromatic case. However, we will see that the upper
bound further holds if the crossing to flip is imposed
at each step by an adversary and we may only choose
which of the two flips (see Figure 1) we perform.

1.3 Related Work

The most relevant work is by van Leeuwen and
Schoone, who showed the same upper bound on g(n)
for Hamilton cycles instead of matchings [17]. The
study of Hamilton cycles is motivated as a post-
processing step for algorithms that find a traveling
salesman tour on a set of points. They show that
they can improve the solution to be non-crossing in
O(n3) steps.

For points in convex position, Oda and Watanabe
established linear upper and lower bounds on g(n),
again on Hamilton cycles instead of matchings [15].

The combinatorial work on flip graphs of geometric
structures is fairly large. See the survey by Bose and
Hurtado [11] for an overview and some motivations.

Matchings, triangulations and spanning trees are
commonly studied in recent work [1–9, 12, 13, 16].
Particularly interesting are triangulations of points
that are in convex positions as they correspond to
Catalan structures. Another interesting application
comes from Lawson flips, which can be used to reach
the Delaunay triangulation in O(n2) flips [14]. This
can be used for the reverse search technique to enu-
merate triangulations [10].

2 Lower Bounds

We start with the lower bound for Theorem 1 and 2.
Let ` and `′ be two parallel horizontal lines and let P
be a set of 2n points, n of which are on ` and `′ respec-
tively. In the following, we consider only matchings
that connect points from ` to `′ (see Figure 3). Every

`

`′

1 2 3

1 2 3

Figure 3: Matching corresponding to cycle (123).

such matching M can be interpreted as a permuta-
tion πM and M is crossing free if and only if πM is
the identity. We can always do flips that correspond
to an elementary step in bubble sort. Bubble sort on
permutation π needs as many steps as the number
of inversions of π. And, the number of inversions is
at most

(
n
2

)
. A small perturbation of the point set

ensures general position.

For the lower bound of Theorem 2, we define a
Schoone matching on 2n points in convex position de-
noted by p1, p2, . . . , p2n in counterclockwise order as
follows. The points p1 is linked to pn+1 and for each
i ∈ [2, n], pi to p2n+2−i (see Figure 4). Observe that

 

Figure 4: An initial configuration guaranteeing the
lower bound of Theorem 2, and a possible flip.

a Schoone matching decomposes into two Schoone
matchings after any flip. By this the total number of
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crossings decreases by exactly one. This implies by in-
duction that h(M) equals the number of crossings mi-
nus one, for all Schoone matchings. Thus n−1 ≤ k(n).

3 Upper Bounds

Before we prove the upper bound, observe in Figure 5
that the number of crossings might increase after a
flip. It is also possible that a segment that has dis-

Figure 5: After the depicted flip, the number of cross-
ings goes from 1 to 3.

appeared after a flip reappear after some more flips
(see Figure 6). These two observations suggest that

 
A

  
A

Figure 6: Segment A disappears and reappears.

there is no straightforward way of getting a good up-
per bound.

For the upper bound of Theorem 1, we define a po-
tential function ΦL(M) that depends on a well-chosen
set of lines L. We show that ΦL(M) ≤ 4n3 and that
ΦL decreases by at least four after any flip. The po-
tential function ΦL(M) is defined as the number of
intersections between a line of L and a segment of M .
We define L as follows. Given two points p, q ∈ P let
` be the supporting line of p and q. We add to L the
two lines slightly above and below ` (see Figure 7).

Figure 7: Construction of L.

It holds that |L| = 2
(
2n
2

)
≤ 4n2. As any line and

segment can cross at most once it follows ΦL(M) ≤
|L| · |M | = 4n3. It remains to show that the number
of segment-line intersections decreases by at least four
in any flip. Consider two crossing segments A and B

A
B

`1
`2

`3

p1

p2
p3

p4

Figure 8: Flipping A and B yields fewer segment-line
intersections.

on points Q = { p1, . . . , p4 } as in Figure 8. Note that
there are only three combinatorial types of lines inter-
secting the convex hull of Q. Either a line separates
p1 and p2 from p3 and p4 as `1; a line separates p1
and p4 from p2 and p3 as `2; or a line separates one
point from the other three as `3. For every type of
lines the number of intersections does not increase af-
ter flipping A and B. It is also easy to see that the
number of intersections decreases by two for lines of
type `1 or `2 after flipping A and B. By definition
of L, there exists for every crossing of two segments
at least two lines of type `1 and at least two lines of
type `2. Thus ΦL(M) decreases by at least four as
claimed.

For the upper bound of Theorem 2, we define a
different set of lines K ,which contains one vertical
line between any two consecutive points ordered in
x-direction, see Figure 9. It follows that ΦK(M) ≤

Figure 9: The set K.

n2 since |K| = n − 1. We have to show that ΦK
decreases by at least two after each flip. Let A and B
be two crossing segments on the points p1, p2, p3, p4
ordered by x-coordinate. Then we replace A and B
by seg(p1, p2) and seg(p3, p4), see Figure 10. It is clear
that at least one line ` between p2 and p3 is not crossed
after the flip and was crossed twice before the flip.
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Figure 10: The number of crossings between ` and the
segments of the matchings decreases by 2.
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Tóth. Disjoint compatible geometric matchings.
Discrete & Computational Geometry, 49(1):89–131,
2013.

[14] Charles L Lawson. Properties of n-dimensional tri-
angulations. Computer Aided Geometric Design,
3(4):231–246, 1986.

[15] Yoshiaki Oda and Mamoru Watanabe. The number of
flips required to obtain non-crossing convex cycles. In
Computational Geometry and Graph Theory, pages
155–165. Springer, 2008.
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