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Packing Plane Spanning Double Stars into Complete Geometric Graphs
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Abstract

Consider the following problem: Given a complete ge-
ometric graph, how many plane spanning trees can be
packed into its edge set?

We investigate this question for plane spanning dou-
ble stars instead of general spanning trees. We give
a necessary, as well as a sufficient condition for the
existence of packings with a given number of plane
spanning double stars. We also construct complete
geometric graphs with an even number of vertices
that cannot be partitioned into plane spanning double
stars.

1 Introduction

A geometric graph is a drawing of a graph in R2 where
the vertex set is drawn as a point set in general po-
sition, that is, no three points lie on a line, and each
edge is drawn as a straight-line segment. A geometric
graph is called plane if no pair of edges crosses. For
two vertices v and w in a geometric graph G, we say
that v sees w in G if the line segment between v and w
is not crossed by any edge of G. In this paper we will
assume all point sets to be in general position, and
for a point set P, we denote by K(P) the complete
geometric graph with vertex set P.

It is a long-standing open question whether any
complete geometric graph with an even number of
vertices has a partition of its edge set into plane span-
ning trees. If the vertices lie in convex position, the
question can be answered in the affirmative, and all
possible partitions can be characterized, as was done
by Bose et al. [3]. The authors also give a sufficient
condition for a complete geometric graph to have a
partition of its edge set into plane spanning trees:

Theorem 1 ([3]) Let P be a point set with n = 2m
points. Suppose that there is a set L of pairwise non-
parallel lines with exactly one point of P in each open
unbounded region formed by L. Then K(P) can be
partitioned into m plane spanning trees.

The trees they construct in this case are double
stars: A double star is either a single edge or a tree
such that the induced subgraph of the vertex set with-
out the leaves is a single edge, called the spine.
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More generally, one can ask how many plane span-
ning trees can be packed into the edge set of a com-
plete geometric graph. Aichholzer et al. [1] show that
at least b

√
n
12c plane spanning trees can be packed

into any complete geometric graph. This result was
very recently improved to dn3 e spanning trees by Gar-
cia [4]. Whereas the trees that Garcia uses for his
packing have diameter 4, the trees that Aichholzer et
al. construct are again double stars. It seems natural
to restrict the open question above to the question
whether any complete geometric graph can be parti-
tioned into plane spanning double stars. However, the
answer to this question is no. We will show this by
proving that for any packing with plane spanning dou-
ble stars, the spines of the double stars form a match-
ing, which we call the spine matching. In the case of
a partition, this spine matching is a perfect matching.
In Section 3 we then show a necessary condition for
a matching to be a spine matching and construct a
point set which has no perfect matching that satisfies
this necessary condition. In Section 4 we show a suffi-
cient condition for a matching to be a spine matching.
Finally, in Section 5 we show that we can decide in
polynomial time whether a given matching is a spine
matching. Due to space restrictions we cannot give
all the proofs. We refer the interested reader to the
full version [5].

2 Partitions and Packings

Consider a point set P of size n and a packing of k
plane spanning double stars into K(P). Let M be the
set of spines of the double stars.

Lemma 2 The set of spinesM of a packing of k plane
spanning double stars into K(P) is a matching.

As mentioned before, we call this matching the
spine matching.

Proof. We want to show that no two edges of M
are incident. Assume for the sake of contradiction
that two edges e = (p, q) and f = (p, r) share an
endpoint p. Let E and F be the spanning double
stars with spines e and f , respectively. Consider the
edge g = (q, r). As all double stars in the partition
must be spanning, the point r must be connected to
the edge e, which means that f ∈ E or g ∈ E. As f is
already the spine of F , we conclude that g ∈ E. On
the other hand q must also be connected to the edge
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f and with the same argument we conclude g ∈ F ,
which is a contradiction. �

Note that for a partition of K(P) into plane span-
ning double stars, we need n

2 double stars, i.e. the
spine matching is a perfect matching. We call a per-
fect matching on a point set P expandable if it is the
spine matching of a partition of K(P) into plane span-
ning double stars.

Corollary 3 Let P be a point set that allows a pack-
ing of k plane spanning double stars into K(P). Then
there is a subset P ′ of P of size 2k that allows a par-
tition of K(P ′) into plane spanning double stars.

Proof. Choose P ′ as the set of vertices of the spine
matching M . �

On the other hand, we can expand a partition on a
subset to a packing on the whole point set.

Lemma 4 Let P be a point set and let P ′ be a subset
of P of size 2k that allows a partition of K(P ′) into
plane spanning double stars. Then P allows a packing
of k plane spanning double stars into K(P).

For an illustration of the proof see Figure 1

Proof. Consider an edge e in the spine matching M
and a point p in P\P ′. Let E be the plane double star
with spine e = (q, r) and let f = (p, q) and g = (p, r)
be the edges connecting the point p to the spine e. In
order to expand E to a plane spanning double star,
we have to add either f or g to E without creating
a crossing. Assume for the sake of contradiction that
both f and g cross an edge of E. Let s and t be the
intersections of f and g with E, respectively. Note
that the edge of E that crosses f must be incident to
r. Similarly, the edge of E that crosses g is incident
to q. As q, r, s and t form a convex quadrilateral, we
deduce that E is not plane, which is a contradiction.
By induction we can therefore expand E to a plane
spanning double star. As the spines form a matching
we can do this for every double star in the partition
of the subset and the claim follows. �
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Figure 1: Illustration of the proof of Lemma 4.

Combining Corollary 3 and Lemma 4 we get the
following result:

Theorem 5 Let P be a point set. Then K(P) allows
a packing of k plane spanning double stars if and only
if there is a subset P ′ of P of size 2k that allows a
partition of K(P ′) into plane spanning double stars.

Thus the problem of finding a large packing with
plane spanning double stars is equivalent to finding
a large subset of the vertex set whose induced graph
can be partitioned into plane spanning double stars,
i.e. a large expandable matching.

3 A necessary condition

We start by showing that any subset of an expandable
matching is again expandable:

Lemma 6 Let K(P) be partitioned into plane span-
ning double stars and let P ′ be the vertices of any
subset of the spine matching M . Then the induced
subgraph on P ′ inherits a partition into plane span-
ning double stars.

Proof. Color each double star in the partition with a
different color, including red. Now delete the vertices
incident to the red spine and consider the colored sub-
graph induced by the remaining vertices. This sub-
graph contains no red edges, as each red edge is inci-
dent to the red spine. Also, all deleted edges that are
not red cannot be spines. Thus the remaining graph
is still partitioned into plane spanning double stars.
The result follows by induction. �

Let e be an edge between two points p and q. The
supporting line `e of e is the line through p and q.

Let e and f be two edges and let s be the intersec-
tion of their supporting lines. If s lies in both e and
f , we say that e and f cross. If s lies in f but not
in e, we say that e stabs f and we call the vertex of
e that is closer to s the stabbing vertex of e. If s lies
neither in e nor in f , or even at infinity, we say that
e and f are parallel. See Figure 2 for an illustration.
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Figure 2: Left: e and f cross; Middle: e stabs f with
stabbing vertex v; Right: e and f are parallel.

It can easily be seen that a matching consisting of
two parallel edges is not expandable. On the other
hand, a matching consisting of two non-parallel edges
is expandable, as can be seen in Figure 3.
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Lemma 7 A matching M consisting of two edges e
and f is expandable if and only if e and f are not
parallel.

L R L R

Figure 3: Any pair of crossing or stabbing edges is
expandable. The spines are drawn thick.

In Figure 3 we can also see that for two non-parallel
edges there are exactly two ways to expand the match-
ing consisting of the two edges into a partition of the
induced complete graph. We call them left-oriented
(L) and right-oriented (R).

For larger matchings, the situation is more compli-
cated, but we can still find some configurations that
cannot occur in the matching. See Figure 4 for a
drawing of these configurations:

A cross-blocker is a triple C = {e, f, g} of three
pairwise non-incident edges such that e and f cross,
g stabs both e and f , g does not intersect the convex
hull of e and f , and both vertices of g see only one
vertex p of e and one vertex q of f in C.

A stab-blocker is a triple S = {e, f, g} of three pair-
wise non-incident edges such that f stabs e, g stabs
both f and e, g does not intersect the convex hull of
e and f , and both vertices of g see only one vertex p
of e in S.

Lemma 8 Let M be a cross-blocker or a stab-
blocker. Then M is not expandable.

For the proof we refer to [5].
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Figure 4: A cross-blocker (left) and a stab-blocker
(right).

Combining this with Lemma 7 and Lemma 6, we
get a necessary condition for a matching to be ex-
pandable.

Theorem 9 Let K(P) be partitioned into plane
spanning double stars. Then the corresponding spine
matching M

• does not contain two parallel edges,

• does not contain a cross-blocker and

• does not contain a stab-blocker.

This allows us to construct a point set whose
complete geometric graph cannot be partitioned into
plane spanning double stars. For every k > 0, we
define the bumpy wheel set BWk as follows:

Place k − 1 points in convex position and parti-
tion them into three sets A1, A2, A3 of consecutive
points such that ||Ai| − |Aj || ≤ 1, i 6= j. Let Hi,
be the convex hull of ∪j 6=iAj . Place the last point p
in the interior such that it lies outside of Hi for all
i ∈ {1, 2, 3}. See Figure 5 for a depiction of BW10.

It can be shown that every parallel-free perfect
matching on BWk, for k ≥ 10 even, contains a cross-
blocker. Thus no perfect matching on these BWk is
expandable. For k odd there cannot even be a perfect
matching.

Theorem 10 For every k ≥ 9, the complete geomet-
ric graph K(BWk) cannot be partitioned into plane
spanning double stars.
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Figure 5: The point set BW10 (left) and a cross
blocker in a parallel-free matching on this point set
(right).

4 A sufficient condition

We will now state a sufficient condition for a matching
to be expandable.

A stabbing chain are three edges, e, f and g, where
e stabs f and f stabs g. We call f the middle edge of
the stabbing chain. See Figure 6 for a drawing of some
stabbing chains. Note that in the rightmost drawing
there are three stabbing chains and each edge is the
middle edge in one of the stabbing chains.

Theorem 11 Let P be a point set and let M be a
perfect matching on P, such that

(a) no two edges are parallel,

(b) if an edge e stabs two other edges f and g, then
the respective stabbing vertices of e lie inside the
convex hull of f and g, and
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Figure 6: Different stabbing chains.

(c) if there is a stabbing chain, then the stabbing
vertex of the middle edge lies inside the convex
hull of the other two edges.

Then M is expandable.

Note that a stab-blocker is a stabbing chain that
satisfies condition (c), but not (b).

We get a partition of K(P) into plane spanning
double stars by expanding every pair of edges in M in
such a way that the induced K4 is left-oriented. For a
complete proof, we refer to [5]. There it is also shown
that the sufficient condition from Bose et al. follows
from this result.

Note that this result in particular implies that a set
of pairwise crossing edges is expandable. Aronov et al.
[2] have shown that every complete geometric graph
has a set of at least b

√
n
12c pairwise crossing edges.

This proves again the result from Aichholzer et al. [1]
that at least b

√
n
12c plane spanning double stars can

be packed into any complete geometric graph.

5 Recognizing expandable matchings

In this section we will consider the decision problem
where, given a perfect matching on a point set P, we
want to decide whether it is expandable. We will show
that we can solve this problem in polynomial time.

Recall that there are exactly two ways to expand
a pair of non-parallel edges to a partition of their in-
duced K4 into spanning double stars. We called the
two options “left-oriented” and “right-oriented”. Ex-
panding a parallel-free perfect matching to a partition
into spanning double stars is thus just choosing for
each pair of edges in the matching, whether the pair
is left-oriented or right-oriented. The given perfect
matching is then the spine matching of the partition.

We can check whether a matching of size n is
parallel-free by looking at all pairs of edges. As there
are O(n2) pairs, this can be done in time O(n2). If
a matching is not parallel-free, it cannot be expand-
able. So it is enough to only consider parallel-free
matchings.

Consider now the partition given by a choice of
orientation of each pair of spines in M , where M is
parallel-free and has size n, and color each double star
with a different color. Assume there is a monochro-
matic crossing, let us say of color red. Then, as M is

parallel-free, the two crossing red edges a and b are
incident to exactly three spines: both edges are in-
cident to the red spine e, and each edge is incident
to another spine, let us assume that a is incident to
the blue spine f , and b is incident to the green spine
g. The fact that both a and b are red already deter-
mines the orientation of the pairs {e, f} and {e, g}, as
a is part of the K4 induced by e and f and b is part
of the K4 induced by e and g. Also, changing one
or both orientations would give a partition where a
and b have different colors. Thus each monochromatic
crossing can be prevented by forbidding the combina-
tion of the orientations of {e, f} and {e, g} that leads
to the crossing being monochromatic. Doing this for
every possible monochromatic crossing that could oc-
cur in some orientation translates into a 2-CNF with
O(n2) variables and O(n3) clauses, where every vari-
able corresponds to a pair of edges in the matching.
For a 2-CNF we can decide whether it is satisfiable
in time linear in the number of clauses, so we can de-
cide in time O(n3) whether a parallel-free matching is
expandable or not. This proves the following theorem:

Theorem 12 Given a perfect matchingM on a point
set P of size n, it is possible to decide in polynomial
time whether this perfect matching can be expanded
to a partition of K(P) into plane spanning double
stars.
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