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Connected Dominating Set in Unit-Disk Graphs is W[1]-hard∗
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Abstract

We prove that connected dominating set is W[1]-hard
for unit-disk graphs.

1 Introduction

Wireless networks give rise to a host of interesting
algorithmic problems. In the traditional model of a
wireless network each node u corresponds to a disk Du

in the plane, whose radius equals the transmission
range of u. Thus u can send a message to another
node v if and only if v ∈ Du. If each node has the
same transmission range and we shrink each disk by
a factor two, this condition is equivalent to requiring
that the (shrunk) disksDu andDv intersect. Thus the
communication graph is the intersection graph of a
collection of congruent disks or, in other words, a unit-
disk graph (UDG). Because of their relation to wireless
networks, UDGs have been studied extensively.

Let D be a set of disks in the plane, and let
GD = (D, E) be the UDG induced by D. A broad-
cast tree is a rooted spanning tree for G. To send
a message from the root of the broadcast tree to all
other nodes, each internal node of the tree has to send
the message to its children. Hence, the cost of broad-
casting is related to the number of internal nodes in
the broadcast tree. A cheapest broadcast tree thus
corresponds to a minimum-size connected dominating
set on GD, that is, a minimum-size subset ∆ ⊂ D such
that the subgraph induced by ∆ is connected and each
node in GD is either in ∆ or it is a neighbor of a node
in ∆. Thus we are interested in the following problem:
given a set D of n disks and a parameter k, does GD
admit a connected dominating set of size at most k?

In the following we denote the dominating-set prob-
lem by ds, the connected dominating-set problem by
cds, and we denote these problems on UDGs by ds-
udg and cds-udg, respectively. It is well known that
ds and cds are np-hard, even for planar graphs [5].
ds-udg and cds-udg are also np-hard [6, 8]. In this
paper we are interested in the parameterized complex-
ity [4] of these problems, with k being the parameter.
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Figure 1: Left: the construction of Marx for k = 2.
Right: example of disks inside a single block (X2).

For general graphs ds and cds are well-known W[2]-
complete problems, but for planar graphs both prob-
lems are fixed-parameter tractable [1, 3]. The ques-
tion is what happens for unit-disk graphs, which are in
between general graphs and planar graphs. Marx [7]
showed that ds-udg is W[1]-hard; in this paper we ex-
tend his construction to show that cds-udg is W[1]-
hard as well. The membership in W[1] remains open
for both ds-udg and cds-udg.

2 The construction by Marx for ds-udg

Our W[1]-hardness proof for cds-udg has the
same global structure as the W[1]-hardness proof of
Marx [7] for ds-udg. Hence, we first describe his
proof. He uses a reduction from Grid Tiling [2] (al-
though Marx does not explicitly state it this way).
In a grid-tiling problem we are given an integer k,
an integer n, and a collection S of k2 non-empty sets
Sa,b ⊆ [n]× [n] (1 6 a, b 6 k), and the goal is to select
an element sa,b ∈ Sa,b for each 1 6 a, b 6 k such that

• If sa,b = (x, y) and sa+1,b = (x′, y′), then x = x′.

• If sa,b = (x, y) and sa,b+1 = (x′, x′), then y = y′.

One can picture these sets in a k × k matrix: in each
cell (a, b), we need to select a representative from the
set Sa,b so that the representatives selected from hor-
izontally neighboring cells agree in the first coordi-
nate, and representatives from vertically neighboring
sets agree in the second coordinate.

The reduction places k2 gadgets, one for each
Sa,b. A gadget contains sixteen blocks, labeled
X1, Y1, X2, Y2, . . . , X8, Y8, that are arranged in a grid.
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Initially, each block X` contains n2 disks, denoted by
X`(1), . . . , X`(n

2) and each block Y` contains n2 + 1
disks denoted by Y`(0), . . . , Y`(n

2). The argument
j of X`(j) can be thought of as a pair (x, y) with
1 6 x, y 6 n for which f(x, y) = (x−1)n+y = j. Let
f−1(j) = (ι1(j), ι2(j)) = (1 + bj/nc, 1 + (j mod n)).

For the final construction, in each gadget at posi-
tion (a, b), delete all disks X`(j) for each ` = 1, . . . , 8
and (ι1(j), ι2(j)) 6∈ Sa,b. This deletion ensures that
the gadgets represent the corresponding set Sa,b. (The
disks of a minimum dominating set in the gadget (a, b)
will signify a specific choice sa,b = (x, y).)

Moreover, there are special connector blocks (de-
noted by A,B,C and D) between neighboring gad-
gets, each of them containing n + 1 disks. A picture
of the construction for k = 3 can be seen in Figure 1,
where each block is represented by a square.

In every block, the place of each disk center is de-
fined with regard to the midpoint of the block, (r, s).
The center of each circle is of the form (r+αε, s+βε)
where r, s, α and β are integers, and ε > 0 a small
constant. We say that the offset of the disk centered
at (r + αε, s + βε) is (α, β). Note that |α|, |β| 6 n,
and ε < n−2, so the disks in a block all intersect
each other. The disks of a block can be thought of
as slightly shifted versions of the inscribed disk of the
square in Figure 1. The exact offsets for each disk are
defined in [7]. We only describe the important prop-
erties. First, two disks can intersect only if they are
in the same or in neighboring blocks. Consequently,
one needs at least 8 disks to dominate a gadget. The
second important property is that disk X`(j) dom-
inates exactly Y`(j), . . . , Y`(n

2) from the “previous”
block Y`, and Y`+1(0), . . . , Y`+1(j−1) from the “next”
block Y`+1). This property can be used to prove the
following key lemma.

Lemma 1 Assume that a gadget is part of an in-
stance such that none of the blocks Yi are intersected
by disks outside the gadget. If there is a dominat-
ing set ∆ of the instance that contains exactly 8k2

disks, then there is a canonical dominating set ∆′ with
|∆′| = |∆|, such that for each gadget G, there is an
integer 1 6 jG 6 n such that ∆′ contains exactly the
disks X1(jG), . . . , X8(jG) from G.

In the gadget Ga,b, the value j defined in the above
lemma represents the choice of sa,b = (ι1(j), ι2(j))
in the grid tiling problem. Our deletion of certain
disks in X-blocks ensures that (ι1(j), ι2(j)) ∈ Sa,b.
Finally, in order to get a feasible grid tiling, gadgets in
the same row must agree on the first coordinate, and
gadgets in the same column must agree on the second
coordinate. This depends on the following lemma.

Lemma 2 Let ∆ be a canonical dominating set. For
horizontally neighboring gadgets G and H represent-
ing jG and jH , the disks of the connector block A are
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Figure 2: Connecting neighbouring blocks

dominated if and only if ι1(jG) 6 ι1(jH); the disks
of B are dominated if and only if ι1(jG) > ι1(jH).
Similarly, for vertically neighboring blocks G′ and H ′,
the disks of block C are dominated if and only if
ι2(jG′) 6 ι2(jH′); the disks of D are dominated if
and only if ι2(jG′) > ι2(jH′).

With the above lemmas, it is easy to see how the
reduction works. A feasible grid tiling defines a domi-
nating set of size 8k2: in gadget Ga,b, the dominating
disks are X` (f(sa,b)) , ` = 1, . . . , 8. On the other
hand, if there is a dominating set of size 8k2, then
there is a canonical dominating set of the same size
that defines a feasible grid tiling.

3 New construction for cds-udg

To extend the construction to cds-udg, we want to
make sure that minimum-size dominating set is con-
nected. This requires two things. First, we must add
new disks “inside” the gadgets — that is, in the empty
space surrounded by the X and Y -blocks — such that
a canonical minimum dominating set includes some
new disks that connect the chosen X`(j) disks with-
out interfering with disks in the Y -blocks. Second, we
need to connect all the different gadgets. This time
in addition to avoiding the Y -blocks, we also need to
avoid interfering with the connector blocks.

In order to have enough space, our gadgets contain
32 blocks instead of 16. The offsets of disks inside
the blocks are not modified: we use the same building
blocks. Figure 2 shows how we arrange these blocks,
and depicts the connector-block placement.

The analogue of Lemma 1 and Lemma 2 are true
here; we have a construction that could be used to
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Figure 3: Left: connecting horizontally; right: connecting one side to the middle.

prove the W[1]-hardness of ds-udg, with canonical
sets of size 16k2, that contain one disk from each X-
block and X ′-block. We extend this construction so
that we have canonical dominating sets that span a
connected subgraph.

The disks we add are always in pairs. One of these
disks (the parent) “connects” some other disks, or
more specifically, the set of parents together with one
arbitrary disk from each X and X ′ block is a con-
nected subgraph of our construction. The other disk
(called leaf ) only intersects its parent and it is dis-
joint from all other disks. Let ∆ be a dominating set.
In ∆, at least one of the parent or the leaf has to
be included so that the leaf is dominated. Hence, we
can assume that a minimum size dominating set con-
tains all parent disks, which (as we will ensure) form
a connected set.

The most important property of the blocks that we
use is that for a small enough value ε, the boundaries
of the disks in a block all lie inside a small width
annulus - for this reason, the blocks in our pictures
are depicted with thick boundary disks. In order for
a parent disk p to intersect every disk in a block it is
sufficient if the boundary of p crosses this annulus.

We are going to add 72 extra disks to every gadget,
and 4 “connector” disks between every pair of hori-
zontally or vertically neighboring gadgets, resulting in
canonical dominating sets of size 16k2+36k2+4k(k−
1) = 56k2−4k (Note that only the parent disks are in-
cluded in the canonical set). In other words, the new
construction has a connected dominating set of size
56k2 − 4k if and only if there is a feasible grid tiling.
Due to length constraints we will not be able to list
the coordinates of these disks and prove all the inter-
sections/disjointness that is required. These details
will be available in the final version of this paper.

Connecting neighboring gadgets. For a pair of horizon-
tally neighboring gadgets, we add two pairs of disks
that connect X ′3 from the left gadget to X ′8 in the
right gadget. This arrangement is depicted on the
left of Figure 3. The parent disk with center T1 in-
tersects every disk in the block X ′3 of the left gadget,
and the other parent intersects every disk in the block
X ′8. The two leaf disks (red disks in the figure) only
intersect their parent. We use a rotated version of
these 4 disks for vertical connections, where the par-
ents connect X ′5 from the upper gadget and X ′2 from
the lower gadget.

Disks inside gadgets. We begin by adding 8 disk pairs
to the center. The parents are arranged in a square,
touching the neighbors, and the leafs are placed so
that it is possible to connect from the outside on each
side. See the middle of Figure 4 for a picture: the
corresponding leaf disks have a darker shade of red.

In order to connect the X-blocks, we need to con-
nect the blocks of each side to the central disks. For
this purpose, we are going to use a zigzag pattern of
disks. The first parent disk intersect all disks in X6

and X7 (i.e., it crosses both annuli), the second parent
is above the block Y6, but it is disjoint from it. The
next with center P3 intersects all disks in X ′6 , and
the disk around P4 is disjoint from the disks in Y ′6 .
Finally, the disk around P5 intersects all disks in X ′5.
The leafs follow a more complicated pattern. This
pattern is depicted on the right side of Figure 3. Our
final gadget can be attained by rotating the above
seven disk pairs around the center (8, 8) by 90, 180
and 270 degrees: see Figure 4. We added the spanned
edges of a canonical dominating set to this picture.
This concludes the proof of our main theorem.

Theorem 3 The cds-udg problem is W[1]-hard.
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Figure 4: A gadget in the final construction. The dashed lines are spanned edges of a canonical dominating set.
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