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Abstract

This paper presents a method for approximating
spherical tessellations, the edges of which are geodesic
arcs, using spherical Laguerre Voronoi diagrams. The
approximation method involves fitting the polyhedron
corresponding to the spherical Laguerre Voronoi dia-
gram to the observed tessellation using optimization
techniques.

1 Introduction

There are many natural phenomena that can be rep-
resented with polygonal patterns on a sphere, such as
the patterns found on fruit skins. If the tessellation
is similar to a Voronoi diagram, then a mathematical
model can be constructed to assist with understand-
ing the polygonal pattern formation.

Since the ordinary Voronoi diagram does not pro-
vide a good representation of most naturally occur-
ring tessellations, consideration needs to be given to
a weighting for the cells. One generalization of the
Voronoi diagram is the Laguerre Voronoi diagram,
a weighted Voronoi diagram, the edges of which are
straight lines. This concept was introduced by [7, 2].
In brief, for a set S of n spheres si = (xi, ri) in Rd,
where xi is the center of the sphere and ri is the sphere
radius, which is interpreted as the generator weight,
the Laguerre distance of x ∈ Rd from si is defined by

dL(x, si) = ‖x− xi‖2 − r2i .

This concept was extended to the spherical Laguerre
Voronoi diagram (SLVD) in [8].

Active areas of research related to Voronoi diagrams
are Voronoi recognition and approximation. The
recognition problem is the determination of whether
or not a tessellation is the Voronoi diagram. If it
is not, we approximate it using the Voronoi diagram
that provides the best fit. Many studies have also fo-
cused on planar tessellation. Recently, we proposed
a method for fitting planar photographic images of
spike-contining objects containing the generators in
polygons, using ordinary spherical Voronoi diagrams,
and applied it to fruit skin pattern analysis in [3].
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Regarding the Laguerre Voronoi diagram, Duan et
al. studied a method for the recognition of planar tes-
sellations in [6]. The SLVD recognition problem was
recently proposed in [5] using the polyhedron corre-
sponding to the SLVD. Some studies have focused on
the 3D structure of the Laguerre approximation. The
tessellation fitting problem, which was considered in
[3], was solved using the SLVD in [4] by approximat-
ing the weights of the generators when the locations
are known.

This study proposes a method for approximating
the SLVD for a spherical tessellation when the genera-
tor locations cannot be derived by conventional meth-
ods, as in [5]. In this situation, it is necessary to ap-
proximate both generator locations and weights. The
remainder of this paper is organized as follows. First,
we recall some definitions and theorems related to the
SLVD. The algorithms for recognizing the SLVD are
then presented. For the case that the given tessella-
tion is not represented exactly by the SLVD, the dif-
ference between the tessellation and the constructed
SLVD is quantified, and an optimization method is
employed to find the best fit SLVD. Since the SLVD
corresponds to a convex polyhedron, the optimization
is applied to adjust this polyhedron to fit the observed
tessellation. Finally, we conduct experiments using
simulated data to confirm the validity of our method.

2 Preliminaries

We assume that the tessellation and the SLVD are
on the unit sphere U in R3, where the center of the
sphere is located at the origin O(0, 0, 0) of the Carte-
sian coordinate system.

We assume a tessellation T = {T1, ..., Tn} consist-
ing of n cells is a 3-regular spherical tessellation, where
Ti is a convex spherical polygon, i.e., the polygon
edges are sections of geodesic arcs.

Let pi be a point on U . The sphere c̃i centered at
pi is defined by

c̃i = {p ∈ U |d̃(pi, p) = ri},

where d̃(pi, p) is the geodesic distance between pi and
p. If 0 ≤ ri < π/2, ri is defined as the spherefs radius.
Otherwise, ri is the imaginary spherefs radius, whose
details were given in [5].
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The Laguerre Proximity, the distance used for
Voronoi construction, is defined by

d̃L(p, c̃i) =
cos d̃(p, pi)

cos ri
.

The Laguerre bisector of two circles c̃i, c̃j is defined

by BL(c̃i, c̃j) = {p ∈ U |d̃L(p, c̃i) = d̃L(p, c̃j)}.
For a set of n sphere circles G̃ = {c̃1, ..., c̃n} on

U , the regions Li := R̃(G̃, c̃i) = {p ∈ U |d̃L(p, c̃i) <
d̃L(p, c̃j), j 6= i} for all i, including their boundaries,
constitute the SLVD. We denote the SLVD with n
regions L1, ..., Ln as L = {L1, ..., Ln}.

Sugihara presented algorithms for constructing the
SLVD for a given set of sphere circles in [8]. Let π(c̃i)
be the plane passing through c̃i and H(c̃i) the half-
space bounded by π(c̃i) including the origin of the
sphere. The intersection of π(c̃i) and π(c̃j) is denoted
by `i,j . The following theorem gives the relation be-
tween `i,j and the Laguerre bisector.

Theorem 1 ([8]) The bisector BL(c̃i, c̃j) is the in-
tersection of U and the plane containing `ij and O.

From Theorem 1, the SLVD can be constructed
from the intersection of all halfspaces H(c̃i) for all
i to obtain the convex polyhedron, and by project-
ing the edges of the polyhedron onto the sphere with
respect to the center O.

3 SLVD Recognition

For a given SLVD L, there exists a polyhedron P
whose central projection onto the sphere coincides
with L. For any tessellation T , we can construct the
SLVD with the following algorithms, whose details
were provided in [5].

Let V be the set of tessellation vertices. Let Ûei,j
be the tessellation edge separating cells i and j, Pi,j

be the plane passing through the edge Ûei,j , vi,j,k the
tessellation vertex corresponding to cells i, j, k, and
Pi := π(c̃i) of the i-th cell.

The following algorithm is for the construction of
the first three planes in the recognition process.

Algorithm 1 [5]: Plane Construction with
Three Adjacent Sites
Input: The sphere c̃i centered at pi(xi, yi,

√
x2i + y2i )

with radius ri, tessellation edges Ûei,j , Ûej,k, Ûei,k, and
tessellation vertex vi,j,k.
Output: The three planes Pi, Pj , Pk with respect to
polygons i, j, k.
Procedure:

1. Construct the plane Pi containing c̃i.

2. Construct the planes Pi,j , Pi,k, Pj,k.

3. Find the intersections `i,j of Pi and Pi,j , and `i,k
of Pi and Pi,k.

4. Construct a geodesic arc Ûeci,j such that Ûeci,j passes
through pi and is perpendicular to Ûei,j .

5. Choose a point qj in polygon j on the arc Ûeci,j .
6. Construct the plane Pj passing through `i,j , qj .

7. Find the intersection `j,k of the planes Pj and
Pj,k.

8. Construct the plane Pk passing through the lines
`i,k and `j,k.

end Procedure

The following algorithm is for the generation of
n planes for the tessellation.

Algorithm 2 [5]: Construction of n Planes
Input: Spherical tessellation T with tessellation
vertices V.
Output: The planes P1, ..., Pn with respect to the
polygons 1, ..., n.
Comment: P is the set of constructed planes.
Procedure:

1. make P empty;

2. Choose an arbitrary vertex vi,j,k ∈ V and employ
Algorithm 1 to construct planes Pi, Pj , Pk.

3. Add the planes Pi, Pj , Pk to the set P.

4. Mark vi,j,k as a used vertex.

5. while there exists an unmarked vertex vl,p,q ∈ V
such that exactly two planes among Pl, Pp and
Pq are included in P.
do

Apply steps 2, 3,and 7 of Algorithm 1 to find
`l,q

and `p,q.
Construct a plane Pq.
Add Pq to the set P.
Mark the vertex vl,p,q.

end while

end Procedure

For each plane Pi ∈ P, we consider the halfs-
pace H(Pi) which includes the sphere origin O, and
find the intersection of all such halfspaces to obtain
the convex polyhedron P.

From Algorithm 1 the construction of the polyhe-
dron P depends on the initial sphere and the point
qj . However, even if we choose them arbitrarily, the
polyhedron construction can still be carried out. This
can be formalized with the following theorem.

Theorem 2 ([5]) For a given tessellation T , the con-
struction of a polyhedron corresponding to the SLVD
L is possible with an arbitrary choice of the initial
plane Pi in step 1 and the point qj in step 5 of Algo-
rithm 1.

The proof of this theorem uses the transformation
of a polyhedron in the projective space of R3 and the
construction processes in Algorithm 1.
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Let L be the tessellation obtained from the intersec-
tion of all halfspaces bounded by P1, ..Pn constructed
by Algorithm 2 and projected onto a sphere. If the
given tessellation T is exactly the SLVD, the tessella-
tion L is identical to the tessellation T , and arbitrary
choice of Theorem 2 gives us the same SLVD. Other-
wise, we get a different SLVD to T .

The construction of the polyhedron P correspond-
ing to the tessellation T shown in Algorithm 2 requires
time complexity O(n log n).

4 SLVD Approximation Method

Note that almost all real world spherical tessellations
cannot be represented exactly with an SLVD. In such
instances, there exists a difference between T and L.
In this section, we define an index for this discrepancy,
and provide a method for minimizing the discrepancy
to obtain the best fit SLVD.

4.1 Discrepancy

For the tessellations T and L, suppose that Ti corre-
sponds to Li for all i. For the i-th cell, let Ai = Ti∩Li

be the intersecting convex spherical polygon. Suppose
that the polygon is ki-gon, which we denote by the an-
ticlockwise sequence of vertices Ai = (Ai,1, ..., Ai,ki).
Also, let αi,1, ..., αi,ki be the angles between two ad-
jacent spherical k-gon edges. The area of the spher-
ical polygon Ai is denoted by area(Ai) If Ai = ∅,
area(Ai) = 0. Otherwise, area(Ai) =

∑ki
j=1 αi,j −

(ki − 2)π.
Let AT , AL be the areas of spherical tessellations T

and L, respectively. The difference between the areas
for the tessellations T and L are defined by DT =
AT −A and DL = AL−A, where A =

∑n
i=1 area(Ai).

The discrepancy between T and L is defined by

∆T ,L =(DT +DL)/(AT +AL)

=1− 1

4π

n∑
i=1

(
ki∑
j=1

αi,j − (ki − 2)π

)
. (1)

4.2 The Procedure for Obtaining an SLVD Corre-
sponding to a Given Tessellation

For the tessellation T , we employ Algorithms 1 and 2
to construct the polyhedron and the SLVD. We com-
pute the discrepancy by the following procedure.

1. For the tessellation T = {T1, ..., Tn}, determine
the area of each cell. The set of all areas is de-
noted AT = {area(T1), ..., area(Tn)}.

2. Choose the cell i such that area(Ti) :=
max area(Tj), j = 1, ..., n.

3. Starting from the i-th cell, define the center of
the first generator from the centroid pi of the
cell. Define the weight of the cell as zero which,
is the plane tangent to the i-th cell at pi.

4. Without loss of generality, choose the location of
the second generator from a point inside this cell.

5. Employ Algorithms 1 and 2 to construct a poly-
hedron P and project P onto the center of the
sphere U .

6. For each i, find the intersection Ai of two spheri-
cal polygons Ti, Li, and compute the discrepancy
D(x) := ∆T ,L.

4.3 Tessellation Fitting

To find the best fit SLVD, we find the minimum dis-
crepancy from Equation (1). The discrepancy ∆T ,L
is related to the angle of the intersecting spherical
polygons and the number of spherical polygon ver-
tices which will change when the SLVD changes.

The main factor which affects the SLVD L is the
alignment of planes P1, ..., Pn composing the polyhe-
dron P of L.

Let the plane Pi be

Pi : aix+ biy + ciz = di. (2)

Since the plane Pi does not pass through the sphere’s
origin, the plane equation (2) can be expressed as

Pi : Aix+Biy + Ciz = 1. (3)

The parameters Ai, Bi, Ci involve the alignment of
the plane Pi. Therefore, the adjustment of the
SLVD of n planes requires the parameters x =
(A1, ..., An, B1, ..., Bn, C1, ..., Cn).

We define the discrepancy function of x using the
procedure in Section 4.2 by D(x) := ∆T ,L.

However, it is complicated to find the relation be-
tween the planes and the angles as defined in (1).
Therefore, we employ the Nelder-Mead method to find
minD(x) numerically, where D(x) is computed in a
pointwise manner. The details of the method are pro-
vided in Chapter 18 of [1].

In brief, we first construct a simplex S =
{S1, ..., Sm+1} of m dimensional parameter space
composed of m+ 1 vertices and compute the discrep-
ancy function value for each simplex vertex. For each
iteration, the worst vertex which yields the maximum
discrepancy will be replaced with a new vertex by
reflection, expansion, or contraction of the centroid
points among the remaining m vertices with ratios
αR, αE , αC . If we cannot replace the worst vertex, we
shrink the simplex to the vertex that has the smallest
discrepancy, with ratio αS . Therefore, the direction
of the simplex is moved to the local minimum of the
discrepancy function. The iteration is terminated if
it meets the convergence criteria.

For a tessellation of n cells, the number of param-
eters considered is m = 3n. Therefore, we consider a
simplex of 3n+1 vertices. The convergence condition
is determined by the number of iterations.
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We choose the first vertex S1 of the initial simplex
from the parameters of the planes constructed by the
procedure provided in Section 4.2. The remaining 3n
vertices are determined by Si = S1 + βei, where ei is
the i-th standard basis of Rm, and β is the positive
number.

5 Experiments and Numerical Results

We conducted the experiments using simulated data.
We used Wolfram Mathematicar10.3 to implement
the algorithms.

To validate Algorithms 1 and 2, we generated the
SLVD for the tessellation T . From the experiments,
we can find the tessellation L which coincides with
the tessellation T . The accuracy was measured using
the discrepancy function value.

For the approximation, we separated the experi-
ment into 2 parts, testing the validity of the frame-
work, and fitting an SLVD to an arbitrary tessellation.
The tessellation had 10 cells. We set αR = 1, αE =
2, αC = −0.5, αS = −0.5, and iterated 4,000 times.

We checked the validity of the approximation
framework by generating the SLVD. After that, we
perturbed some of the initial plane parameters, which
yielded a different SLVD to the initial one. After
that, we employed the Nelder-Mead method to opti-
mize the discrepancy function. From the experiment,
we found that we can find the local minimum that
has the smallest discrepancy, and the estimated SLVD
converges to the tessellation. The results for the dis-
crepancy minimization are shown in Figure 1 (left).

1000 2000 3000 4000

0.02

0.04

0.06

0.08

1000 2000 3000 4000

0.05

0.10

0.15

0.20

Figure 1: The change in the discrepancy of the ini-
tial simplex when (left) the initial simplex vertex was
perturbed; (right) arbitrary spherical tessellation

After that, we conducted the experiment for an
arbitrary spherical tessellation and employed the
Nelder-Mead method. From the experiment, we can
find the parameter that best fits the given tessellation.
The change in the discrepancy is shown in Figure 1
(right), and the results for the fitted SLVD is shown
in Figure 2.

6 Concluding Remarks

We proposed a framework for finding an SLVD that
can be fitted to a given spherical tessellation. The

Figure 2: (Left) Solid lines: the spherical tessellation;
dashed lines: SLVD from the S1 parameter; (Right)
dotted lines: the fitted SLVD from the optimization

optimization of the discrepancy function was shown
to rely on the orientation of the polyhedron of the
SLVD.

The proposed framework can be used for recog-
nizing whether the given tessellation is close to the
Voronoi diagram. For the 3D real world spherical tes-
sellation, we can extract the tessellation, project it
onto a sphere and employ our framework. However,
similar to [3, 4], this can be considered as a new prob-
lem when we use a planar photographic image instead
of the information of 3D tessellation.
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