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Improved Bounds on the Growth Constant of Polyiamonds∗
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Abstract

A polyiamond is an edge-connected set of cells on
the triangular lattice. In this paper we provide im-
proved lower and upper bounds on the asymptotic
growth constant of polyiamonds, proving that it is
between 2.8424 and 3.6050.

1 Introduction

(a) n = 1: Two moniamonds

(b) n = 2: Three diamonds

(c) n = 3: 6 triamonds

(d) n = 4: 14 tetriamonds

A polyomino of size n is an edge-connected set of n
cells on the square lattice Z2. Similarly, a polyiamond
of size n is an edge-connected set of n cells on the
triangular lattice. Fixed polyiamonds are considered
distinct if they have different shapes or orientations.
In this paper we consider only fixed polyiamonds, and
so we refer to them simply as “polyiamonds.” Figure 1
shows polyiamonds of size 1–4.

In general, a connected set of cells on a lattice is
called a lattice animal. The fundamental combinato-
rial problem concerning lattice animals is “How many
animals with n cells are there?” The study of lattice
animals began in parallel more than half a century ago
in two different communities. In statistical physics,
Temperley [19] investigated the mechanics of macro-
molecules, and Broadbent and Hammersley [5] stud-
ied percolation processes. In mathematics, Eden [6]
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and others analyzed cell growth problems. Since then,
counting animals has attracted much attention in the
literature. However, despite serious efforts over the
last 50 years, counting polyominoes is still far from be-
ing solved, and is considered one of the long-standing
open problems in combinatorial geometry.

The symbol A(n) usually denotes the number of
polyominoes of size n; See sequence A001168 in the
On-line Encyclopedia of Integer Sequences (OEIS) [1].
Since no analytic formula for the number of ani-
mals is yet known for any nontrivial lattice, a great
portion of the research has so far focused on effi-
cient algorithms for counting animals on lattices, pri-
marily on the square lattice. Elements of the se-
quence A(n) are currently known up to n = 56 [11].
The growth constant of polyominoes was also treated
extensively in the literature, and a few asymptotic
results are known. Klarner [12] showed that the
limit λ := limn→∞

n
√
A(n) exists, and the main prob-

lem so far has been to evaluate this constant. The
convergence of A(n + 1)/A(n) to λ (as n→∞) was
proven only three decades later by Madras [15], us-
ing a novel pattern-frequency argument. The best-
known lower and upper bounds on λ are 4.0025 [4]
and 4.6496 [13], respectively. It is widely believed
(see, e.g., [7, 8]) that λ ≈ 4.06, and the currently
best estimate, λ = 4.0625696 ± 0.0000005, is due to
Jensen [11].

In the same manner, let T (n) denote the number
of polyiamonds of size n (sequence A001420 in the
OEIS). Elements of the sequence T (n) were computed
up to n = 75 [9, p. 479] using a transfer-matrix al-
gorithn by Jensen [ibid., p. 173], adapting his origi-
nal polyomino-counting algorithm [11]. Earlier counts
were given by Lunnon [14] up to size 16, by Sykes
and Glen [18] up to size 22, and by Aleksandrowicz
and Barequet [2] (extending Redelmeier’s polyomino-
counting algorithm [17]) up to size 31.

Similarly to polyominoes, the limits
limn→∞

n
√
T (n) and limn→∞ T (n + 1)/T (n) ex-

ist and are equal. Let, then, λT denote the growth
constant of polyiamonds. Klarner [12, p. 857] showed
that λT ≥ 2.13 by taking the square root of 4.54, a
lower bound he computed for the growth constant
of animals on the rhomboidal lattice, using the
fact that a rhombus is made of two neighboring
equilateral triangles. This bound is also mentioned
by Lunnon [14, p. 98]. Rands and Welsh [16] used
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renewal sequences in order to show that

λT ≥ (T (n)/(2(1 + λT )))1/n (1)

for any n ∈ N. Substituting the easy upper bound
λT ≤ 4 (see below) in the right-hand side of this
relation, and knowing at that time elements of the
sequence T (n) for 1 ≤ n ≤ 20 only (data pro-
vided by Sykes and Glen [18]), they used T (20) =
173, 338, 962 to show that λT ≥ (T (20)/10)1/20 ≈
2.3011. Nowadays, since we know T (n) up to n = 75,1

we can obtain, using the same method, that λT ≥
(T (75)/10)1/75 ≈ 2.7714. We can even do slightly
better than that. Substituting in Equation (1) the
upper bound we obtain in Section 3 (λT ≤ 3.6050), we
see that λT ≥ (T (75)/(2(1 + 3.6050)))1/75 ≈ 2.7744.
However, we can still improve on this.

An easy upper bound, based on an idea of Eden [6]
(originally applied to the square lattice for setting an
upper bound on λ), was described by Lunnon [14,
p. 98]. Every polyiamond P can be built according to
a set of n−1 “instructions” taken from a superset of
size 2(n−1). Each instruction tells us how to choose a
lattice cell c, neighboring a cell already in P , and add c
to P . (Some of these instruction sets are illegal, and
other sets produce the same polyiamonds, but this

only helps.) Hence, λT ≤ limn→∞
(

2(n−1)
n−1

)1/n
= 4.

As can be seen, there is a large gap between the
lower and upper bounds on λT . Based on existing
data, it is believed [18] (but has never been proven)
that λT = 3.04 ± 0.02. In this paper we improve
both lower and upper bounds on λT , showing that
2.8424 ≤ λT ≤ 3.6050. The new lower bound is ob-
tained by using a concatenation argument tailored
to the triangular lattice, and the new upper bound
is obtained by investigating the growth constant of
a sequence dominating the enumerating sequence of
polyiamonds.

2 Lower Bound

A concatenation of two polyiamonds P1, P2 is the
translation of P1 relative to P2, so that P1, P2 do not
overlap but their union is a valid (connected) polyia-
mond, and all the translated versions of the cells of P1

are smaller than the cells of P2 under a proper defini-
tion of a lexicographic order on the cells of the lattice.
We use a concatenation argument in order to improve
the lower bound on λT .

Theorem 1 λT ≥ 2.8424.

Proof. We orient the triangular lattice as is shown
in Figure 1(a), and define a lexicographic order on
the cells of the lattice as follows: A cell c1 is smaller
than cell c2 6= c1 (denoted as c1 < c2) if the lattice

1T (75) = 15, 936, 363, 137, 225, 733, 301, 433, 441, 827, 683, 823.

(b) Left arrow

(a) A polyiamond (c) Right arrow

Figure 1: Polyiamonds on the triangular lattice

column of c1 is to the left of the column of c2, or
if c1, c2 are in the same column and c1 is below c2.
Denote triangles which look like a “left arrow” (Fig-
ure 1(b)) as triangles of Type 1, and triangles which
look like a “right arrow” (Figure 1(c)) as triangles of
Type 2. Let T1(n) be the number of polyiamonds of
size n whose largest (top-right) triangle is of Type 1,
and let T2(n) be the number of polyiamonds of size
n whose largest triangle is of Type 2. Obviously, we
have T (n) = T1(n) + T2(n).2 An interesting obser-
vation is that by rotational symmetry, the number of
polyiamonds of size n, whose smallest (bottom-left)
triangle is of Type 2, is also T1(n), and so the number
of polyiamonds, whose smallest triangle is of Type 1,
is T2(n).

We now proceed with a standard concatenation ar-
gument, tailored to the specific case of the triangular
lattice. Interestingly, not all pairs of polyiamonds of
size n can be concatenated. In addition, there exist
many polyiamonds of size 2n which cannot be rep-
resented as the concatenation of two polyiamonds of
size n. Let us count carefully the amount of pairs of
polyiamonds that can be concatenated.

• Polyiamonds, whose largest triangle is of Type 1,
can be concatenated only to polyiamonds whose
smallest triangle is of Type 2, and this can be
done in two different ways (see Figure 2(a)).
There are 2(T1(n))2 concatenations of this kind.

• Polyiamonds, whose largest triangle is of Type 2,
can be concatenated, in a single way, only to
polyiamonds whose smallest triangle is of Type 1
(see Figure 2(b)). There are (T2(n))2 concatena-
tions of this kind.

Altogether, we have 2(T1(n))2+(T2(n))2 possible con-
catenations, and, as argued above,

2(T1(n))2 + (T2(n))2 ≤ T (2n). (2)

2Observe that T1(n) = T2(n−1) and, hence, T (n) = T2(n)+
T2(n − 1). Indeed, when the largest cell of a polyiamond P is
of Type 1, its only possible neighboring cell within P is the cell
immediately below it. Therefore, the number of polyiamonds
of size n whose largest cell is of Type 1 is equal to the number
of polyiamonds of size n−1 whose largest cell is of Type 2.
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Two polyiamonds

Vertical concatenation Horizontal concatenation

(a) Two concatenations of Type-1 and Type-2
triangles

Two polyiamonds

Vertical concatenation

(b) A single concatenation of Type-2 and Type-1
triangles

Figure 2: Possible concatenations of polyiamonds

Let us now find a lower bound on the number of con-
catenations. Let x = x(n) be the fraction of polyi-
amonds of Type 1 out of all polyiamonds of size n,
i.e., T1(n) = xT (n) and T2(n) = (1− x)T (n). Eq. (2)
can then be rewritten as T (2n) ≥ 2(xT (n))2 + ((1 −
x)T (n))2 = (3x2−2x+1)T 2(n). Elementary calculus
shows that the function f(x) = 3x2−2x+1 assumes its
minimum at x = 1/3 and that f(1/3) = 2/3. Hence,

2

3
T 2(n) ≤ T (2n).

By manipulating this relation, we obtain that(2

3
T (n)

)1/n ≤ (2

3
T (2n)

)1/(2n)

This implies that the sequence
(

2
3T (k)

)1/k
,(

2
3T (2k)

)1/(2k)
,
(

2
3T (4k)

)1/(4k)
, . . . is monotone

increasing for any value of k, and, as a subsequence of((
2
3T (n)

)1/n)
, it converges to λT too. Therefore, any

term of the form
(

2
3T (n)

)1/n
is a lower bound on λT .

In particular, λT ≥ ( 2
3T (75))1/75 ≈ 2.8424. �

3 Upper Bound

We follow the method used recently [3] for polyomi-
noes (animals on the square lattice).3

3.1 Number of Compositions

Definition 2 A polyiamond P can be decomposed
into two polyiamonds P1, P2 if the cell set of P can
be split into two complementing non-empty subsets,
such that each subset is a valid (connected) polyia-
mond. We also say that the polyiamonds P1, P2 can
be composed so as to yield the polyiamond P .

A composition of two polyiamonds is a natural gen-
eralization of the widely-used notion of the concate-
nation of polyiamonds. In fact, concatenation is a
composition in lexicographic order.

Theorem 3 (Composition) Let P1, P2 be two polyi-
amonds of sizes n1 and n2, respectively. Then, P1 and
P2 can be composed and yield at most (n1 + 2)(n2 +
2)/2 different polyiamonds.4

Proof. Refer again to Figure 1(a). A boundary edge
of a polyiamond can be either vertical, ascending, or
descending. The inside of the polyiamond can be ei-
ther to the left or to the right of a boundary edge,5

where the latter case is marked below by overlining.
Denote, then, the number of boundary edges of the
various types by x and x̄, where x ∈ {v, a, d}. Thus,
if the perimeter of a polyiamond is p, we can clas-
sify its boundary by the vector (v, a, d, v̄, ā, d̄), where
v+a+d+v̄+ā+d̄ = p. Suppose we are given two polyi-
amonds P1, P2 with respective perimeters p1, p2 and
associated perimeter vectors (vi, ai, di, v̄i, āi, d̄i) (for
i = 1, 2). Then, a trivial upper bound on the num-
ber of compositions of P1, P2 is

∑
t∈{v,a,d,v̄,ā,d̄} t1t̄2,

using the convention ¯̄ti = ti. Note that the num-
ber of boundary edges of any type of a polyiamond of
perimeter p cannot exceed p/2. Therefore, by convex-
ity, the number of compositions of P1, P2 is bounded
from above by 2(p1/2 · p2/2) = p1p2/2. (A slightly
sharper upper bound which takes into account odd
perimeters is dp1/2e dp2/2e + bp1/2c bp2/2c.) The
perimeter of a polyiamond of size n is maximized
when the cell-adjacency graph of the polyiamond is
a tree, in which case the perimeter is n+ 2. (Indeed,
the perimeter of a single triangle is 3, and each of
the additional n−1 triangles adds at most 1 to the
perimeter.) The claim follows. �

3There is a gap in Theorem 3 in this reference. Therefore,
we take a different approach in Theorem 3 below.

4A slightly sharper upper bound is (dn1/2e + 1)(dn2/2e +
1) + (bn1/2c+ 1)(bn2/2c+ 1).

5The “left” (resp., “right”) side of an ascending edge means
above (resp., below) the edge, while the “left” (resp., “right”)
side of a descending edge means below (resp., above) the edge.



32nd European Workshop on Computational Geometry, 2016

3.2 Balanced Decompositions

Definition 4 A decomposition of a polyiamond of
size n into two polyiamonds P1, P2 is k-balanced if
k ≤ |Pi| ≤ n− k (for i = 1, 2).

Theorem 5 Every polyiamond of size n has at least
one d(n− 1)/3e-balanced decomposition.

Proof. Let us rephrase the claim in graph terminol-
ogy. In fact, we prove a stronger claim which states
that every connected graph G, for which ∆(G) ≤ 3,
can be partitioned into two vertex-disjoint subgraphs
G1, G2, such that (1) G1, G2 are connected; and
(2) d(n− 1)/3e ≤ |Gi| ≤ b(2n+ 1)/3c (for i = 1, 2).
This can be done constructively by considering a
spanning tree of G, marking an arbitrary vertex as its
root, and traversing the tree downwards from the root
while keeping the invariant that either the already-
traversed subgraph meets the size requirement or the
untraversed part contains a subgraph with this prop-
erty. When the process stops, which must be the case,
the desired decomposition is found. �

3.3 The Bound

Theorem 6 λT ≤ 3.6050.

Proof. First, the combination of Theorems 3 and 5
implies that

T (n) ≤
bn/2c∑

k=dn−1
3 e

(1−
δk,n/2

2
)
(k + 2)(n− k + 2)

2
T (k)T (n− k).

Indeed, every polyiamond of size n can be decom-
posed in at least one d(n− 1)/3e-balanced way into
a pair of polyiamonds P1, P2 of sizes n1 and n2, re-
spectively (where n1 + n2 = n), and a code with up
to (n1 +2)(n2 +2)/2 options will tell us uniquely how
to compose P1, P2 in order to reconstruct P . (The
factor (1− δk,n/2/2) compensates for double counting
which occurs when P1, P2 are of the same size.) Natu-
rally, P can be decomposed in more than one way, and
the number of compositions of P1, P2 can be smaller
than (n1 + 2)(n2 + 2)/2, but this only helps.

Second, define the sequence T ′(n) as follows.

T ′(n) =
T (n) 1≤n≤75;

bn/2c∑
k=

⌈
n−1
3

⌉(1−
δk,n/2

2
)
(k+2)(n−k+2)

2
T ′(k)T ′(n− k) n>75.

(Recall that the sequence T (n) is known for 1 ≤ n ≤
75.) Since T ′(n) ≥ T (n) for any value of n ∈ N (this
can be proven by a simple induction on n), the growth
constant of T ′(n), if it exists, is an upper bound on λT .

Numerical calculations show that T ′(n) does have an
asymptotic growth constant which is about 3.6050,
implying the claim. �
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