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Abstract

Given a set P of n points in the plane, the order-k
Gabriel graph on P , denoted by k-GG, has an edge
between two points p and q if and only if the closed
disk with diameter pq contains at most k points of P ,
excluding p and q. It is known that 10-GG contains a
Euclidean bottleneck matching of P , while 8-GG may
not contain such a matching. We answer the following
question in the affirmative: does 9-GG contain any
Euclidean bottleneck matching of P?

It is also known that 10-GG contains a Euclidean
bottleneck Hamiltonian cycle of P , while 5-GG may
not contain such a cycle. We improve the lower bound
and show that 7-GG may not contain any Euclidean
bottleneck Hamiltonian cycle of P .

1 Introduction

Let P be a set of n points in the plane. For any
two points p, q ∈ P , let D[p, q] denote the closed disk
that has the line segment pq as diameter. Let |pq| be
the Euclidean distance between p and q. The Gabriel
graph on P , denoted by GG(P ), is a geometric graph
that has an edge between two points p and q if and
only if D[p, q] does not contain any point of P \{p, q}.
Gabriel graphs were introduced by Gabriel and Sokal
[6] and can be computed in O(n log n) time [8]. Every
Gabriel graph has at most 3n − 8 edges, for n ≥ 5,
and this bound is tight [8].

The order-k Gabriel graph on P , denoted by k-GG,
is the geometric graph that has an edge between two
points p and q if and only if D[p, q] contains at most k
points of P \{p, q}. Thus, the Gabriel graph, GG(P ),
corresponds to 0-GG. Su and Chang [9] showed that
k-GG can be constructed in O(k2n log n) time and
contains O(k(n− k)) edges. For two points p, q ∈ P ,
the lune of p and q, denoted by L(p, q), is defined as
the intersection of the two open disks of radius |pq|
centered at p and q. The order-k Relative Neighbor-
hood Graph on P , denoted by k-RNG, is the geomet-
ric graph that has an edge (p, q) if and only if L(p, q)
contains at most k points of P . Note that k-RNG on
P is a subgraph of k-GG on P .

A matching in a graph G is a set of edges without
common vertices. A perfect matching is a matching
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that matches all the vertices of G. A Hamiltonian cy-
cle in G is a cycle that visits each vertex of G exactly
once. In the case when G is an edge-weighted graph,
a bottleneck matching is defined to be a perfect match-
ing in G, in which the weight of the maximum-weight
edge is minimized. Moreover, a bottleneck Hamilto-
nian cycle is a Hamiltonian cycle in G, in which the
weight of the maximum-weight edge is minimized. For
a point set P , a Euclidean bottleneck matching is a per-
fect matching in the complete graph with vertex set
P that minimizes the longest edge; the weight of an
edge is defined to be the Euclidean distance between
its two endpoints. Similarly, a Euclidean bottleneck
Hamiltonian cycle is a Hamiltonian cycle that mini-
mizes the longest edge.

Chang et al. [4] proved that a Euclidean bottle-
neck matching of P is contained in 16-RNG.1 This
implies that 16-GG contains a Euclidean bottleneck
matching. In [2] the authors improved the bound for
the latter graphs by showing that 10-GG contains a
Euclidean bottleneck matching. They also show that
8-GG may not have any Euclidean bottleneck match-
ing. They asked if 9-GG contains any Euclidean bot-
tleneck matching. In Section 2, we answer this ques-
tion in the affirmative.

Theorem 1 For every point set P , 9-GG contains a
Euclidean bottleneck matching of P .

Chang et al. [3] proved that a Euclidean bottle-
neck Hamiltonian cycle of P is contained in 19-RNG,
which implies that 19-GG contains a Euclidean bot-
tleneck Hamiltonian cycle. Abellanas et al. [1] im-
proved the bound by showing that 15-GG contains
a Euclidean bottleneck Hamiltonian cycle. Kaiser et
al. [7] improved the bound further by showing that
10-GG contains a Euclidean bottleneck Hamiltonian
cycle. They also provide an example which shows
that 5-GG may not contain any Euclidean bottleneck
Hamiltonian cycle. In Section 3, we improve the lower
bound to 7 and prove the following proposition.

Proposition 1 There exist point sets P such that
7-GG does not contain any Euclidean bottleneck
Hamiltonian cycle of P .

1They defined k-RNG to have an edge (p, q) if and only if
L(p, q) contains at most k − 1 points of P .

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



32nd European Workshop on Computational Geometry, 2016

Therefore, it remains open to decide whether or not
8-GG or 9-GG contains a Euclidean bottleneck Hamil-
tonian cycle.

2 Proof of Theorem 1

In this section we prove Theorem 1. The proofs
for Lemmas 2 and 3 are similar to the proofs in [4]
which are adjusted for Gabriel graphs. The proof of
Lemma 4 is based on a similar technique that is used
in [7] for the Hamiltonicity of Gabriel graphs.

Let M be the set of all perfect matchings of the
complete graph with vertex set P . For a matching
M ∈M we define the weight sequence of M , WS(M),
as the sequence containing the weights of the edges of
M in non-increasing order. A matching M1 is said to
be less than a matching M2 if WS(M1) is lexicograph-
ically smaller than WS(M2). We define a total order
on the elements of M by their weight sequence. If
two elements have exactly the same weight sequence,
break ties arbitrarily to get a total order.

Let M∗ = {(a1, b1), . . . , (an
2
, bn

2
)} be a matching in

M with minimum weight sequence. Observe that M∗

is a Euclidean bottleneck matching for P . In order
to prove Theorem 1, we will show that all edges of
M∗ are in 9-GG. Consider any edge (a, b) in M∗. If
D[a, b] contains no point of P \{a, b}, then (a, b) is an
edge of 9-GG. Suppose that D[a, b] contains k points
of P \ {a, b}. We are going to prove that k ≤ 9. Let
R = {r1, r2, . . . , rk} be the set of points of P \ {a, b}
that are in D[a, b]. Let S = {s1, s2, . . . , sk} represent
the points for which (ri, si) ∈M∗.

Without loss of generality, we assume that D[a, b]
has diameter 1 and is centered at the origin o = (0, 0),
and a = (−0.5, 0) and b = (0.5, 0). For any point p
in the plane, let ‖p‖ denote the distance of p from o.
Note that |ab| = 1, and for any point x ∈ D[a, b] \
{a, b} we have max{|xa|, |xb|} < 1.

Lemma 2 For each point si ∈ S, min{|sia|, |sib|} ≥
1.

Proof. The proof is by contradiction; suppose that
|sia| < 1. Let M be the perfect matching obtained
from M∗ by deleting {(a, b), (ri, si)} and adding
{(si, a), (ri, b)}. The lengths of the two new edges
are smaller than 1, and hence both (si, a) and (ri, b)
are shorter than (a, b). Thus, WS(M) <lex WS(M∗),
which contradicts the minimality of M∗. �

As a corollary of Lemma 2, R and S are disjoint.

Lemma 3 For each pair of points si, sj ∈ S, |sisj | ≥
max{|risi|, |rjsj |, 1}.

Proof. The proof is by contradiction; suppose that
|sisj | < max{|risi|, |rjsj |, 1}. Let M be the per-
fect matching obtained from M∗ by deleting {(a, b),

(ri, si), (rj , sj)} and adding {(a, ri), (b, rj), (si, sj)}.
Note that max{|ari|, |brj |, |sisj |} < max{|risi|, |rjsj |,
|ab|}. Thus, WS(M) <lex WS(M∗), which contra-
dicts the minimality of M∗. �

Let C(x, r) (resp. D(x, r)) be the circle (resp. closed
disk) of radius r that is centered at a point x in
the plane. For i ∈ {1, . . . , k}, let s′i be the inter-
section point between C(o, 1.5) and the ray with ori-
gin at o passing through si. Let the point pi be si,
if ‖si‖ < 1.5, and s′i, otherwise. See Figure 1. Let
S′ = {a, b, p1, . . . , pk}.

Observation 1 Let sj be a point in S, where ‖sj‖ ≥
1.5. Then, the disk D(sj , ‖sj‖ − 0.5) is contained in
the disk D(sj , |sjrj |). Moreover, the disk D(pj , 1) is
contained in the disk D(sj , ‖sj‖ − 0.5). See Figure 1.
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Figure 1: Proof of Lemma 4; pi = s′i, pj = s′j , and
pk = sk.

Lemma 4 The distance between any pair of points
in S′ is at least 1.

Proof. Let x and y be two points in S′. We are going
to prove that |xy| ≥ 1. We distinguish between the
following three cases.

• {x, y} = {a, b}. In this case the claim is trivial.

• x ∈ {a, b}, y ∈ {p1, . . . , pk}. If ‖y‖ = 1.5, then y
is on C(o, 1.5), and hence |xy| ≥ 1. If ‖y‖ < 1.5,
then y is a point in S. Therefore, by Lemma 2,
|xy| ≥ 1.

• x, y ∈ {p1, . . . , pk}. Without loss of generality
assume x = pi and y = pj , where 1 ≤ i < j ≤ k.
We differentiate between three cases:
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Case (i): ‖pi‖ < 1.5 and ‖pj‖ < 1.5. In this
case pi and pj are two points in S. Therefore, by
Lemma 3, |pipj | ≥ 1.

Case (ii): ‖pi‖ < 1.5 and ‖pj‖ = 1.5. In this case
pi is a point in S. By Observation 1, the disk
D(pj , 1) is contained in the disk D(sj , |sjrj |),
and by Lemma 3, pi is not in the interior of
D(sj , |sjrj |). Therefore, pi is not in the interior
of D(pj , 1), which implies that |pipj | ≥ 1.

Case (iii): ‖pi‖ = 1.5 and ‖pj‖ = 1.5. In this
case ‖si‖ ≥ 1.5 and ‖sj‖ ≥ 1.5. Without loss
of generality assume ‖si‖ ≤ ‖sj‖. For the sake
of contradiction assume that |pipj | < 1; see Fig-
ure 1. Then, for the angle α = ∠siosj we have
sin(α/2) < 1

3 . Then, cos(α) = 1 − 2 sin2(α/2) >
7
9 . By the law of cosines in the triangle 4siosj ,
we have

|sisj |2 < ‖si‖2 + ‖sj‖2 −
14

9
‖si‖‖sj‖. (1)

By Observation 1, the disk D(sj , ‖sj‖ − 0.5)
is contained in the disk D(sj , |sjrj |), and by
Lemma 3, si is not in the interior of D(sj , |sjrj |).
Therefore, si is not in the interior of D(sj , ‖sj‖−
0.5). Thus, |sisj | ≥ ‖sj‖ − 0.5. In combination
with Inequality (1), this implies

‖sj‖
(

14

9
‖si‖ − 1

)
< ‖si‖2 −

1

4
. (2)

In combination with the assumption ‖si‖ ≤ ‖sj‖,
Inequality (2) implies

5

9
‖si‖2 − ‖si‖+

1

4
< 0,

i.e.,

5

9

(
‖si‖ −

3

10

)(
‖si‖ −

3

2

)
< 0.

This is a contradiction, because, since ‖si‖ ≥ 1.5,
the left-hand side is non-negative. Thus |pipj | ≥
1, which completes the proof of the lemma.

�

By Lemma 4, the points in S′ have mutual distance
at least 1. Moreover, the points in S′ lie in D(o, 1.5).
Fodor [5] proved that the smallest circle which con-
tains 12 points with mutual distances at least 1 has ra-
dius 1.5148. Therefore, S′ contains at most 11 points.
Since a, b ∈ S′, this implies that k ≤ 9. Therefore, S,
and consequently R, contains at most 9 points. Thus,
(a, b) is an edge in 9-GG. This completes the proof of
Theorem 1.

3 Proof of Proposition 1

In this section we prove Proposition 1. We show that
for some point sets P , 7-GG does not contain any
Euclidean bottleneck Hamiltonian cycle of P .

Figure 2 shows a configuration of a multiset P =
{a, b, x, r1, . . . , r8, s1, . . . , s7} of 26 points, where s5 is
repeated nine times. The closed disk D[a, b] is cen-
tered at o and has diameter one, i.e., |ab| = 1. D[a, b]
contains all 8 points of the set R = {r1, . . . , r8}; these
points lie on the circle with radius 1

2 − ε that is cen-
tered at o; all points of R are in the interior of D[a, b].
Let S = {s1, . . . , s7} be the multiset of 15 points,
where s5 is repeated nine times. The red circles have
radius 1 and are centered at points in S. Each point
in S is connected to its first and second closest point
(the black edges in Figure 2). Let B the chain formed
by these edges. Note that r1 and r8 are the end-
points of B. Specifically, |r1s1| = |r8s7| = 1, and for
each point ri, where 2 ≤ i ≤ 7, |sia| > 1, |sib| > 1,
|six| > 1, and |risi−1| = |risi| = 1 (here by s5 we
mean the first and last endpoints of the chain defined
by points labeled s5). Consider the Hamiltonian cy-
cle H = B∪{(r1, a), (a, b), (b, x), (x, r8)}. The longest
edge in H has length 1. Therefore, the length of the
longest edge in any bottleneck Hamiltonian cycle for
P is at most 1. In the rest we will show—by contra-
diction—that any bottleneck Hamiltonian cycle of P
contains (a, b). Since in B each point of S is connected
to its first and second closest point, every bottleneck
Hamiltonian cycle of P contains B, because other-
wise, one of the points in S should be connected to
a point that is farther than its second closest point,
and hence that edge is longer than 1. Now we consider
possible ways to construct a bottleneck Hamiltonian
cycle, say H∗, using the edges in B and the points
a, b, x. Assume (a, b) /∈ H∗. Then, in H∗, a is con-
nected to two points in {r1, r8, x}. We differentiate
between two cases:

• (a, x) ∈ H∗. In this case |ax| > 1, and hence the
longest edge in H∗ is longer than 1, which is a
contradiction.

• (a, x) /∈ H∗. In this case (a, r1) ∈ H∗ and
(a, r8) ∈ H∗. This means that H∗ does not con-
tain x and b, which is a contradiction.

Therefore, we conclude that H∗, and consequently
any bottleneck Hamiltonian cycle of P , contains (a, b).
Since D[a, b] contains 8 points of P \ {a, b}, (a, b) /∈
7-GG. Therefore 7-GG does not contain any Eu-
clidean bottleneck Hamiltonian cycle of P .

4 Conclusion

We considered the inclusion of a Euclidean bottleneck
matching and a Euclidean bottleneck Hamiltonian cy-
cle of a point set P in higher order Gabriel graphs. It
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Figure 2: Proof of Proposition 1. The bold-black edges belong to B. D[a, b] contains 8 points.

is known that 10-GG contains a bottleneck matching
and a bottleneck Hamiltonian cycle of P . We proved
that 9-GG contains a bottleneck matching of P and
7-GG may not contain any bottleneck Hamiltonian
cycle of P . It remains open to decide if 8-GG or 9-GG
contains any bottleneck Hamiltonian cycle of P .
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C. M. Nicolás, and P. Ramos. On structural and graph
theoretic properties of higher order Delaunay graphs.
Int. J. Comput. Geometry Appl., 19(6):595–615, 2009.

[2] A. Biniaz, A. Maheshwari, and M. Smid. Matchings
in higher-order Gabriel graphs. Theor. Comput. Sci.,
596:67–78, 2015.

[3] M.-S. Chang, C. Y. Tang, and R. C. T. Lee. 20-
relative neighborhood graphs are Hamiltonian. Jour-
nal of Graph Theory, 15(5):543–557, 1991.

[4] M.-S. Chang, C. Y. Tang, and R. C. T. Lee. Solv-
ing the Euclidean bottleneck matching problem by k-
relative neighborhood graphs. Algorithmica, 8(3):177–
194, 1992.

[5] F. Fodor. The densest packing of 12 congruent circles
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