
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Two-Dimensional Closest Pair Algorithms in the VAT-Model

Fabian Dütsch∗

Abstract

Recently, Jurkiewicz and Mehlhorn [10] observed that
the cost of virtual address translation affects the prac-
tical runtime behavior of several fundamental algo-
rithms on modern computers. We extend their results
to two dimensions by analyzing and experimentally
evaluating algorithms for the closest pair problem re-
garding the impact of address translation.

1 Introduction

Modern computer systems feature a multi-level mem-
ory hierarchy and virtual memory, which cannot be
modeled adequately with the RAM-model. Usually,
the number of cache misses in the presence of a mem-
ory hierarchy is examined in the EM- [1] and CO-
model [6]. A machine modeled in these models con-
sists of a slow main memory of unlimited size and
a fast cache of size M . Data are moved between
these levels in blocks of size B. In contrast to EM-
algorithms, cache-oblivious algorithms assume the op-
timal cache replacement strategy and must not refer
to the parameters M and B in the code.

However, these models do not cover the cost of vir-
tual address translation. Running processes access
their own linear address spaces via virtual addresses.
The operating system transparently maps virtual to
physical addresses, typically by walking a root-to-leaf
path in a process-specific translation tree. Jurkiewicz
and Mehlhorn observed impacts of the cost of virtual
address translation on the practical runtime of sev-
eral fundamental algorithms: the observed runtime of
scanning an array in random order, binary searching,
and sorting by heapsort exceeds the predicted RAM-
and I/O-complexities by a factor of O(log n) [10]. As
these results cannot be explained by any of the for-
mer models, Jurkiewicz and Mehlhorn developed a
new model of computation, that considers the cost
of virtual address translation: the Virtual Address
Translation (VAT) model. Their analyses show that
the VAT-complexities match the measured runtime
behaviors.

In this note, we revisit the two-dimensional closest
pair problem in the VAT-model. We analyze and ex-
perimentally evaluate the algorithms by Bentley and
Shamos [4], Hinrichs et al. [9] and Golin et al. [7].

∗Department of Computer Science, Westfälische Wilhelms-
Universität Münster, Germany, f.duetsch@uni-muenster.de

2 The Model

The VAT-model [10] extends the EM-model by model-
ing virtual addresses and their translation cost. A ma-
chine modeled in the VAT-model features two mem-
ory levels, both of which are partitioned into pages
of size P (corresponding to B). The single processor
cannot directly access the main memory, but first has
to load the concerned page into the translation cache
(TC) of the size of W pages (corresponding to M/B
blocks). The cost of a cache fault is τ times the cost of
a RAM-operation, where τ is some positive machine
parameter.

The program accesses the main memory via vir-
tual addresses. An address is a (d + 1)-tuple
in {0, . . . ,K − 1}d × {0, . . . , P − 1}; the first part,
called the index, determines the page and the sec-
ond part the offset within the page. To translate
a virtual address, one has to traverse a root-to-leaf
path in a K-ary translation tree of height d :=
dlogK(max used page)e. Leaves correspond to data
pages, i.e., physical pages storing the data. The trans-
lation nodes of the translation path are determined by
the components of the address index and are accessed
successively. The internal nodes of size P as well as
leaves are stored in the physical main memory and
have to be present in the TC when being accessed.

The VAT-complexity is given by the number of
cache faults incurred by accesses to data pages and
translation nodes. Hence, it may exceed the I/O-
complexity by a factor of O(d) = O(logK(m/P)) and
the RAM-complexity by a factor of O(τd), with m be-
ing the program’s memory consumption. The asymp-
totic order relations assume, among others, that fol-
lowing relations hold: [10]

(A1) 1 ≤ τd ≤ P , i.e., loading a translation path can
be amortized over P RAM-operations.

(A2) d ≤ W < mθ, for θ ∈ (0, 1), i.e., the memory
consumption is much bigger than the cache size.

Furthermore, we assume that the root of the transla-
tion tree is always present in the TC.

2.1 Previous results

To analyze cache-oblivious algorithms in the VAT-
model, Jurkiewicz and Mehlhorn interpreted the
translation tree as a (d + 1)-level memory hierarchy:
for 0 ≤ i ≤ d, the translation nodes of height i corre-
spond to blocks of size KiP and form a memory level.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

32nd European Workshop on Computational Geometry, 2016

By uniformly allocating the TC to these memory lev-
els, the following statement results.

Theorem 1 ([10]) A cache-oblivious algorithm with
I/O-complexity C(M,B, n), whereM is the size of the
cache and B is the size of a block, incurs maximally∑d−1
i=0 C(bWd cK

iP,KiP, n) cache faults in the VAT-
model with optimal replacement strategy.

Thus, linear scanning with I/O-complexity 1 + d nB e
causes at most 2d+ K

K−1
n
P faults in the VAT-model.

However, this theorem cannot be applied to many
cache-oblivious algorithms, as the tall-cache assump-
tion M ∈ Ω(B2) does not hold on each level of the
corresponding memory hierarchy. To address this
problem, Jurkiewicz et al. derived the upper bound
4d · C(PW4 , dP, n) for a larger class of algorithms [11].
It implies that I/O-optimal sorting algorithms sort

with at most O(nP d
logn/(PW)

logW/d e) faults in the VAT-

model. For realistic cache sizes W ∈ Ω(d2), this com-
plexity equals the optimal I/O-complexity. Further-

more, taking into account τ
P

(A1)

≤ 1
d shows, that the

VAT-cost of sorting is dominated by the RAM-cost
O(n log n).

3 Preliminaries

We start by analyzing several building blocks used in
the closest pair algorithms in the VAT-model.

3.1 Search Data Structures

When searching for a random element, at least one
random memory access is necessary. In this case, the
best strategy is to cache the upper nodes of the trans-
lation tree. We can prove:

Proposition 2 The average number of cache faults
incurred by a search for a random and uniformly dis-
tributed element in a data structure storing n ele-
ments is at least dlogK

n
P (W+1)e − 1.

This implies that the VAT-complexity of hashing, un-
like its RAM- and I/O-complexity, is not constant.
At the same time, the amortized number of faults
caused by perfect hashing with constant amortized
RAM-complexity does not exceed Θ(logK

n
PW).

The VAT-complexity of accessing and updating
a search tree depends on its memory layout and
the cache replacement strategy. A search in a
balanced binary tree with a random layout incurs

O(log nd
W logK

n
PW)

(A2)
= O(log n

W logK
n
PW) cache

faults, if the upper nodes of the search tree and of the
translation tree are cached. Searching in a B-tree [2]
causes O(logP

n
W logK

n
PW) faults. The multi-level

blocking regarding blocks of sizes KiP , for 0 ≤ i ≤ d,
generates a static, cache-aware layout with search cost

of
∑d−1
i=0 dlogKiP ne ≤ d+ logP n+ logK n ln logP n

cache faults, if searches start with an empty
TC. Otherwise, the number of cache faults is
O(logP

n
W + logK

n
W log logP

n
W), if W ≥ 2d. Apply-

ing Theorem 1 to the search in the cache-oblivious
van Emde Boas layout [12] results in the same VAT-
complexity [10]. Furthermore, the cache-oblivious
layout can be dynamized to support searches and
updates in the same worst-case complexity (see, e.g.,
[3]). As the following theorem shows, this is optimal.

Theorem 3 The average- and worst-case complexi-
ties of the number of faults incurred by comparison-
based searching is Θ(logP

n
W + logK

n
W log logP

n
W).

Proof Sketch. To establish a lower bound, we sepa-
rately consider a problem with lower I/O-complexity
C(M,B, n) on the levels of the translation tree. Inter-
preting the levels as different levels of a memory hier-
archy shows that

∑d
i=0 C(WKiP,KiP, n) is a lower

bound for the number of cache faults in the VAT-
model. In both cases, plugging in the lower I/O-
bound Ω(logB

n
M) of comparison-based searching re-

sults in the claimed lower VAT-complexity. �

The proof carries over to each problem for which
an optimal cache-oblivious algorithm whose I/O-
complexity does not depend on M is known. In this
case, the stated lower bound matches the upper bound
from Theorem 1.

In summary, it can be stated that the cost of vir-
tual address translation usually dominates the RAM-
complexity of searching.

3.2 Divide and Conquer

In the RAM-model, the complexity of divide-and-
conquer algorithms is often determined using the mas-
ter theorem [5]. However, it is not suitable for the
VAT-model, as it may eliminate additional parame-
ters, such as P and W . Additionally, it does not
consider that cache faults can be prevented at deep
recursive levels in certain cases. We thus adapt the
master theorem to the VAT-model.

Theorem 4 Let a ∈ N and b ∈ R be constants, with
b > 1, and let V ∈ N. Let C, f , and g be asymptotic
positive functions. Consider an in-place, divide-
and-conquer algorithm incurring C(W,P,K, d, n) ≤
a · C(W,P,K, d, dnb e) + g(W,P,K, d) · f(n) faults.
Then, the number of cache faults incurred by an
asymptotically optimal replacement strategy on a
TC of size W ≥ V ≥ 2d+ Ω(d) is at most

O((g(W,P,K, d) · f(PV) + V)(n
PV)logb a),

if ∃c > 1∃n0 ∈ N∀n ≥ n0 : a · f(nb) ≥ c · f(n).
O(g(W,P,K, d) · f(n) · log n

PV + (n
PV)logb aV),

if ∃k ≥ 0 : f(n) ∈ Θ(nlogb a logk n).
O(g(W,P,K, d) · f(n)),

if ∃c < 1∃n0 ∈ N∀n ≥ n0 : a · f(nb) ≤ c · f(n).

EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Proof Sketch. g(W,P,K, d) can be factored out,
so that the additional parameters are not being elimi-
nated. In cases 1 and 2, cache faults can be prevented
from level of recursionO(logb

n
PV) to the base cases by

caching the translation paths to all particular input
data in V pages of the TC. As a result, the factors dif-
fer from the corresponding factors of the master the-
orem. Furthermore, accessing the input data of the
recursive calls of level O(logb

n
PV) and deeper incurs

at most O((n
PV)logb aV) faults. �

The theorem also applies for out-of-place algo-
rithms, if the used memory areas fulfill the inclusion
property, i.e., if each memory area accessed by a recur-
sive call is a contiguous subset of the corresponding
memory area of the particular recursive caller. Details
will appear in a full version of this note.

A sequential accesses pattern within a divide-and-
conquer algorithm causes up to O(aid + m

P) cache
faults on the ith level of recursion, where m is the size
of the memory area storing the data accessed. The fol-
lowing statement shows that the number decreases to
O(d+ m

P), if a translation path of a “nearby” page is
cached at the beginning of each recursive call.

Proposition 5 Let a ∈ N and S be a sequential sub-
sequence of the accesses of a divide-and-conquer algo-
rithm. Consider the memory areas accessed by S at
a fixed level of recursion. If

• the recursive calls’ memory areas are disjoint,
each contiguous, and contained in a contiguous
memory area of overall size m,
• the translation path of the previous access of S

is still present when the particular next access of
S within the same recursive call occurs, and
• a translation path of any address between the

currently accessed page and the first page of the
(a−1)th previous memory area (ordered by their
addresses) is present when the first access of S
within any recursive call except for the one cor-
responding to the first memory area occurs,

then S maximally incurs (a + 1)d + a K
K−1

m
P cache

faults on that level of recursion.

For all but the first memory accesses within a call
of a recursive algorithm, an address of the current
memory area may already be present. Hence, if we
strengthen the third condition to require the presence
of a translation path of an address of the current mem-
ory area, the upper bound amounts to 2d+ 2 K

K−1
m
P .

In summary, it can be stated that divide and con-
quer is an important design tool for VAT-algorithms.

4 Closest Pair Algorithms

In this section, we investigate the VAT-efficiency for
algorithms representing different design paradigms.

4.1 Divide and Conquer

The divide-and-conquer algorithm by Bentley and
Shamos [4] divides the point set by the median x-
coordinate, recurses on both subsets, merges the sub-
sets by y-coordinates, and, determines the closest pair
within a certain vertical stripe around the median x-
coordinate. To efficiently compute the median, imple-
mentations usually presort the input points. We can
implement the out-of-place merging by five sequential
scans (three interleaved scans to merge the points in
an additional memory area and two interleaved scans
to copy them back to the input area). In parallel
to copying the points back, the points of the vertical
stripe can be extracted to the beginning of the addi-
tional memory by interleaved scanning. Finally, the
closest pair of points within the stripe can be found
with the cost of a single scan, as each point from the
stripe has do be compared to maximally seven subse-
quent points.

By Proposition 5, each of the seven scans incurs
O(d+ n

P) cache faults on every level of recursion. As
both memory areas used obey the inclusion property
when being allocated appropriately, the calls at level
of recursion O(log n

PW) and deeper maximally cause
O((n

PW)log2 2W) = O(nP) faults (Thm. 4(2), V ∈
Θ(W)). Therefore, the algorithm incursO(nP log n

PW)
cache faults, provided that W ≥ 4d+ Ω(d). By (A1),
their costs amount to O(nd log n

PW) ⊆ O(n logK).
Consequently, the overall VAT-complexity O(n log n)
is dominated by the RAM-complexity. The number
of cache faults can be decreased further to the trans-
lation cost of sorting O(nP d

logn/(PW)
logW/d e) by increasing

the branching factor to Θ(W/d), similar to distribu-
tion sweeping [8].

4.2 Plane-Sweep

The plane-sweep algorithm by Hinrichs et al. [9] in-
crementally computes the closest pair by iteratively
processing the input points in x-order. It maintains
points already considered but still relevant ordered by
their y-coordinates in a search tree. When advancing
to the next point p, points not relevant anymore are
deleted from the search tree, p is inserted, and is then
compared to a constant number of adjacent points in
the tree.

In the VAT-model, the cost of the initial sorting
step is O(n log n) [10]. Accessing the respectively
current point and the points potentially not relevant
anymore within the sorted array overall incurs
O(d+ n

P) cache faults. Assuming a VAT-optimal
search data structure, the insert, delete, and search
operations cause O(n logP

n
W + n logK

n
W log logP

n
W)

cache faults. The overall VAT-complexity
Θ(n log n+ τn(logP

n
W + logK

n
W log logP

n
W)) is

dominated by the translation cost of searching,
provided that τ ∈ Ω(logK/ log logP

n
W).

32nd European Workshop on Computational Geometry, 2016

4.3 Randomized Incremental Construction

The algorithm by Golin et al. [7] uses randomized
incremental construction. Initially, the points are
randomly permuted. Even a naive implementation
with RAM-complexity Θ(n) incurs O(n logK

n
PW)

cache faults, whereas sorting increases the RAM-
complexity. Next, the algorithm iteratively inserts the
points into a grid of mesh size equal to the distance
of the closest pair by then. In this way, a constant
number of queries to the grid and, if necessary, a re-
build suffice to process each point. As the probability
of a rebuild in the ith iteration amounts to O(1/i),
the expected overall RAM-complexity is Θ(n), if dy-
namic perfect hashing is used. In that case, by Propo-
sition 2, the expected number of cache faults amounts
to Θ(n logK

n
PW) . Therefore, the translation cost of

random permuting and hashing dominate the VAT-
complexity.

5 Experimental Evaluation

To evaluate the practical impact of translation cost,
we implemented the above closest pair algorithms in
C++. The experiments were run on a single core of
an Intel Core i5-4210 CPU clocked at 2.7 GHz with
3 MiB cache and 8 GiB main memory running a 64-
bit Ubuntu 14.04.2 OS. The code was compiled with
g++ 4.8.2 and optimization level -O3. The runtimes
were averaged over 100 measurements.

16 18 20 22 24 26
0

20

40

60

80

log2 n

R
u

n
n

in
g

ti
m

e
/

R
A

M
-c

om
p

le
x
it

y D&C
Plane-Sweep
RIC

Figure 1: Normalized operation time in logarithmic
scale of closest pair algorithms

The above figure illustrates the normalized opera-
tion time, i.e., the measured running time divided by
the RAM-complexity [10]. The algorithms were ap-
plied to random point sets distributed in two different
ways. The points are uniformly distributed in the unit
square (�) and in {0} × [0, 1) (depicted as |) respec-
tively. In both cases, the normalized operation time
of the algorithm by Bentley and Shamos is constant.

Therefore, the practical runtime behavior matches the
RAM-complexity, as predicted by the VAT-model.
The implementation of the algorithm by Hinrichs et
al. uses std::set, i.e., a balanced search tree with-
out an optimal memory layout and with overall VAT-
complexity O(τn log n

W logK
n
PW). In case of the first

distribution, it is not clear if the normalized operation
time is bounded. In the second case, the normalized
operation time seems to grow approximately linear
in the logarithm of the input size. Thus, the worst-
case runtime behavior O(n log2 n) seems to exceed the
RAM-complexity and match the VAT-complexity.

We evaluated implementations of the algorithm by
Golin et al. using hash maps of different libraries and
several different hash functions. In all cases, the shape
of the graph is just as irregular as the depicted (down-
scaled) normalized operation time of the implemen-
tation using std::unordered multimap. Because of
that, the runtime behavior does not entirely conform
with the VAT-complexity. It seems, however, to ex-
ceed the RAM-complexity. We leave the explanation
of this phenomenon as an open problem.

References

[1] A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. Communica-
tions of the ACM, 31(9):1116–1127, Sept. 1988.

[2] R. Bayer and E. M. McCreight. Organization and
maintenance of large ordered indices. Acta Informat-
ica, 1(3):173–189, 1972.

[3] M. A. Bender, R. Cole, and R. Raman. Exponential
structures for efficient cache-oblivious algorithms. In
Proc. 29th ICALP, pages 195–207, 2002.

[4] J. L. Bentley and M. I. Shamos. Divide-and-conquer
in multidimensional space. In Proc. 8th ACM STOC,
pages 220–230, 1976.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. 2009.

[6] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ra-
machandran. Cache-oblivious algorithms. In Proc.
40th FOCS, pages 285–298, 1999.

[7] M. Golin, R. Raman, C. Schwarz, and M. Smid. Sim-
ple randomized algorithms for closest pair problems.
Nordic Journal of Computing, 2(1):3–27, Mar. 1995.

[8] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry. In
Proc. 34th FOCS, pages 714–723, 1993.

[9] K. Hinrichs, J. Nievergelt, and P. Schorn. Plane-
sweep solves the closest pair problem elegantly. Infor-
mation Processing Letters, 26(5):255–261, Jan. 1988.

[10] T. Jurkiewicz and K. Mehlhorn. The cost of address
translation. In Proc. ALENEX, pages 148–162, 2013.

[11] T. Jurkiewicz, K. Mehlhorn, and P. K. Nicholson.
Cache-oblivious VAT-algorithms. Computing Re-
search Repository, abs/1404.3577, 2014.

[12] H. Prokop. Cache-oblivious algorithms. Master’s the-
sis, Massachusetts Institute of Technology, June 1999.

