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A PTAS for Euclidean Maximum Scatter TSP

László Kozma∗ Tobias Mömke∗†

Abstract. We study the problem of finding a tour of
n points in Rd in which every edge is long. More pre-
cisely, we wish to find a tour that maximizes the length
of the shortest edge in the tour. The problem is known
as Maximum Scatter TSP, and it was introduced by
Arkin et al. (SODA 1997), motivated by applications in
manufacturing and medical imaging. Arkin et al. gave
a 2-approximation for the metric version of the prob-
lem and showed that this is the best possible ratio
achievable in polynomial time (assuming P 6= NP).
They raised the question of whether one can obtain
a better approximation ratio in the planar Euclidean
case. We answer this question in the affirmative in
a more general setting, by giving a polynomial-time
approximation scheme (PTAS) for Maximum Scatter
TSP in an arbitrary fixed-dimensional Euclidean space.

1 Introduction

Let P = {p1, . . . , pn} be a set of points in Rd.
A tour T of P is a sequence T = (pi1 , . . . , pin),
where {i1, . . . , in} = {1, . . . , n}. The scatter of tour
T is the minimum distance between neighboring points
of T , i. e., min{d(pi1 , pi2), . . . , d(pin−1

, pin), d(pin , pi1)}.
The Maximum Scatter Travelling Salesman Problem
(MSTSP) asks for a tour of P with maximum scatter.
We study this problem in the geometric setting where
the distance function d is the Euclidean distance
between points.

Arkin et al. [1] initiated the study of MSTSP in
1997, motivated by problems in manufacturing (riv-
eting) and medical imaging. They gave a simple 2-
approximation algorithm for the more general metric
problem (where distances are only required to satisfy
the triangle inequality). They also showed that for
the metric variant, the approximation ratio of 2 is op-
timal (assuming P 6= NP). It was left open whether a
better approximation ratio can be obtained in polyno-
mial time if the problem has more geometric structure
(e. g., if distances are Euclidean). Arkin et al. raise
this question for the planar case (see also [6] and [13,
p. 681]).

It is natural to expect that geometric structure
should lead to stronger approximation-guarantees.
The same phenomenon has been observed for the stan-
dard TSP problem: for metric TSP the best known
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approximation ratio is 1.5 (Christofides [5]), with a cur-
rent lower bound of 123

122 (Karpinski et al. [9]), whereas
for Euclidean TSP Arora [2] and Mitchell [11] inde-
pendently obtained polynomial-time approximation
schemes (PTAS). Similarly, the Euclidean MaxTSP
problem (where the goal is to maximize the total length
of the tour) admits a PTAS (Barvinok [3]), but the
metric version is currently known to admit only a
7
8 -approximation (Kowalik and Mucha [10]).

In this paper we answer the open question about
planar MSTSP, by giving a polynomial-time (1− ε)-
approximation, for arbitrary fixed ε > 0. In fact,
we present a PTAS for MSTSP in arbitrary fixed-
dimensional Euclidean spaces. Since MSTSP is known
to be strongly NP-complete in dimensions 3 and
above [7], our result settles the classical complexity
status of the problem in these dimensions. We show
the following result.

Theorem 1 Let P be a set of n points in Rd. A tour
of P whose scatter is at least a (1 − ε) factor of the

MSTSP optimum can be found in time O
(
n(100d/ε

2)d
)

.

Further related work. TSP is one of the cornerstones
of combinatorial optimization and several variants have
been considered in the literature (we refer to [8] for a
survey). Minimizing variants are more common, but
there exist natural settings in which tours with long
edges are desirable. This is the case in certain manufac-
turing operations where nearby elements in a sequence
are required to be geometrically well-separated in order
to avoid interferences [1].

MSTSP (a.k.a. max min TSP) appears similar to
Bottleneck TSP (a.k.a. min max TSP), a problem
known to be NP-complete already in the planar Eu-
clidean case [8]. For metric Bottleneck TSP, 2-
approximation is the best possible [12], and we are not
aware of stronger approximation-results for geometric
variants. Despite the similarity between MSTSP and
Bottleneck TSP, it is unclear whether any techniques
can be transferred from one problem to the other.

Open question. Our current work does not address
the complexity status of solving MSTSP exactly in
the planar Euclidean case. It remains open whether
this problem is NP-hard (the situation is the same for
MaxTSP). We note that this question has a natural
equivalent formulation: is checking for existence of
a Hamiltonian cycle NP-complete in complements of
unit disk graphs?
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2 The PTAS (Proof of Theorem 1)

Consider a set P of n points in Rd, a threshold value `,
and a precision parameter ε > 0. Given these inputs,
a PTAS for the MSTSP problem is an algorithm with
running time polynomial in n, required to return “yes”
if a tour of P exists with scatter (i. e., shortest length)
at least `. The algorithm is required to return “no” if
there is no tour of P with scatter at least `(1− ε), and
is otherwise allowed to return “yes” or “no” arbitrarily.

Such a PTAS is an approximation algorithm for the
decision version of the MSTSP problem. Observe that
the optimum value of the MSTSP problem can only
take one of

(
n
2

)
possible values (the distances between

points in P ). Thus, a binary search over the possible
values turns a PTAS of the above kind into a PTAS
for the optimization problem. In the following, we
focus on the decision problem. Before proceeding to
the algorithm, we present some structural observations
upon which the algorithm relies.

Given a point set P ∈ Rd, let GP be a graph with
vertex set V (GP ) = P and edge set E(GP ) = {{x, y} |
x, y ∈ P ∧ d(x, y) ≥ `}. In words, GP contains all
edges with length at least `. The MSTSP decision
problem asks whether GP contains a Hamiltonian
cycle. The following result is well-known (see e. g., [4]),
and is also used by Arkin et al.

Lemma 2 (Dirac’s theorem) A graph G with n
vertices has a Hamiltonian cycle if the degree of every
vertex in G is at least n

2 . Furthermore, in such a case,
a Hamiltonian cycle can be found in O(n2) time.

Observe that if the condition of Lemma 2 holds for
GP , then we are done. If that is not the case, then
there is a vertex in GP , whose degree is less than
n
2 . In other words, there is a point p ∈ P , such that
|Bp ∩ P | > n

2 , where Bp is the open ball of radius `
with center p. Let us fix p to be such a point, and let
B′p be the open ball of radius 2` with center p. We
show that the optimal solution can be assumed to have
a certain structure in relation to Bp and B′p.

Lemma 3 Suppose a tour T of P with scatter at
least ` exists. Then there exists a tour T ′ of P with
scatter at least `, such that for every pair x, y ∈ P of
neighboring points in T ′, at least one of x and y is
contained in B′p.

Proof. Suppose this is not the case. Since Bp contains
more than half of the points in P , it must contain
at least one edge of T entirely. Let {z, t} be such
an edge. Since both x and y are outside of B′p we
have d(x, t), d(x, z), d(y, t), d(y, z) ≥ `. Thus, we can
replace the edges {x, y} and {z, t} in T , with either
{x, z} and {y, t}, or {x, t} and {y, z}, depending on
the ordering of the points in T . We obtain another
tour with scatter at least `, that no longer contains
the edge {x, y}. We proceed in the same way until we

have removed all edges with both endpoints outside
of B′p. See Fig. 1 for an illustration. �

Fig. 1: Illustration of Lemma 3. The dashed edges can
replace {x,y} and {z,t} in the optimal tour.

The next ingredient of the algorithm is a coarsening
of the input, by rounding points in P to points of a grid.
Let Gδ be a δ-scaling of the d-dimensional unit grid,
i. e., Gδ = {δ(n1, . . . , nd) | n1, . . . , nd ∈ Z}, for an
arbitrary δ > 0. Let fδ (or simply f) be the mapping
from Rd to Gδ that maps each point to its nearest
grid point (breaking ties arbitrarily). The following
properties result from basic geometric considerations.

Lemma 4 With f and δ as defined earlier, we have:
(i) d(x, y) ≥ d(f(x), y)− δ

√
d/2 for all x, y ∈ Rd,

(ii) |B ∩Gδ| ≤ (2`/δ + 1)d for every open ball B of
radius `.

Observe that f maps the graph GP to a multi-
graph HP defined as follows. Let V (HP ) = {v | v =
f(x), x ∈ P}, i. e., the set of grid points with at least
one mapped point of P , and let E(HP ) = {{u, v} |
u = f(x), v = f(y), {x, y} ∈ E(GP )}, i. e., the pairs
of grid points to which edges of GP are mapped. We
also maintain multiplicities on edges of HP , i. e., we
keep track of how many edges of GP are mapped to
each edge of HP .

A tour T of P (i. e., a Hamiltonian cycle of GP ) is
mapped by f to an Eulerian tour of HP . It is not hard
to see that given this Eulerian tour of HP , a tour of
P can be recovered (by replacing multiple occurrences
of a grid point with the points in P that are mapped
to it). Moreover, the scatter of the recovered tour is
not far from that of T (by Lemma 4(i)). However, the
edges of HP are not available to us, and thus it seems
prohibitively expensive to guess a correct Eulerian tour
on the vertices of HP (there may be Ω(n) vertices).
The key insight of the algorithm is that it is sufficient
to consider the portion of HP that falls inside B′p.

At a high level, the strategy to obtain an approxi-
mation is the following (see Fig. 2 for an illustration).
Assuming that the optimal tour has the property from
Lemma 3, it consists of edges inside B′p, and “hops” of
two consecutive edges, connecting a point outside B′p
with two points inside B′p. We replace such hops with
virtual edges, both of whose endpoints are in B′p. The
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Fig. 2: Illustration of the algorithm. (i) Input point set with open balls Bp and B′p with center p and radii ` and 2`
respectively. (ii) Points inside B′p mapped to grid points (shown as squares), and “guessed” edges. Filled squares indicate
grid points to which more than one point is mapped. Dotted lines indicate virtual edges, and the number indicates the
multiplicity of an edge (omitted if 1). (iii) Virtual edges matched to points outside of B′p and extended to hops, resulting
in a multigraph. (iv) An Eulerian tour of the multigraph, expanded to a tour on the initial point set.

resulting tour is entirely in B′p, and we can “guess” its
image under f . This is now feasible, since the number
of grid points involved is bounded by Lemma 4(ii).
We also guess the multiplicities of all edges, i. e., how
many original edges have been mapped to each edge,
and how many edges are virtual.

We then disambiguate the virtual edges, i. e., we
find a suitable midpoint outside of B′p for each hop.
This is achieved by solving a perfect matching problem.
We obtain a multigraph on which we find an Eulerian
tour. Finally, from the Eulerian tour we recover a tour
of P . The distortion in distances due to rounding (i. e.,
the approximation ratio) is controlled by the choice of
the grid resolution δ.

We only focus on answering whether a tour with
the required scatter value exists. It will be clear that
constructing such a tour can be achieved with minor
changes to the algorithm. More details follow.

Algorithm. Input: a set P of n points in Rd, a
threshold `, and a precision parameter ε > 0.

1. Set δ = ε`/(2
√
d), and let `′ = `(1− ε/2).

2. Find p ∈ P such that |Bp ∩ P | > n
2 , where Bp

and B′p are the open balls with center p of radius
` and 2`. If no such p exists, output Yes.

3. Let f : P → Gδ map points to their nearest
grid point. Compute the set C = {f(x) | x ∈
(P ∩B′p)}, and for each v ∈ C, compute the sets
f−1(v) = {x | f(x) = v}.

4. Let m, v :
(
C
2

)
→ N. For all {u, v} ⊆ C, guess

m({u, v}) and v({u, v}), such that
(i) m({u, v}) = 0 if d(u, v) < `′, and
(ii) for all v ∈ C:∑
u∈C\{v}

(
m({u, v}) + v({u, v})

)
= 2|f−1(v)|.

5. Construct a bipartite graph B as follows:
- for each {u, v} ⊆ C, add v({u, v}) vertices la-
beled {u, v} to left vertex set L(B).
- for each x ∈ P \ B′p add a vertex labeled x to
the right vertex set R(B).

- add an edge ({u, v}, x) between {u, v} ∈ L(B)
and x ∈ R(B) to E(B) iff d(u, x), d(v, x) ≥ `′.

6. Find a perfect matching M of B; if there is none,
output No.

7. Construct a multigraph H as follows:
- let V (H) = C ∪ (P \B′p).
- for all {u, v} ⊆ C add m({u, v}) copies of the
edge {u, v} to E(H).
- for all ({u, v}, x) ∈M add the edges {u, x} and
{v, x} to E(H).

8. Find an Eulerian tour Q of H; if there is none,
output No.

9. Transform Q into a tour T of P , by replacing
multiple occurrences of every point v ∈ C, with
the points in f−1(v) in arbitrary order.

10. Output Yes.

Note. The “guessing” in step 4 should be thought of
as a loop over all possible values of m and v satisfying
the requirements. The overall output is No if the
output is No for all possible values of step 4.

Correctness. We prove two claims which together
imply that the algorithm is a PTAS for MSTSP: (1)
if the algorithm outputs Yes, then there is a tour of
P with scatter at least `(1− ε), and (2) if there is a
tour of P with scatter at least `, then the algorithm
outputs Yes.

(1) If we obtain Yes in step 2, then we have a tour
with scatter at least ` by Lemma 2. Suppose that the
algorithm returns Yes in step 10. This means that
steps 5–9 were successful with the values of m and
v chosen in step 4, and T is a tour of P . Consider
an arbitrary edge {x, y} of T . By step 9, there is a
corresponding edge {u, v} in the Eulerian tour Q of H.
By construction of H in step 7, either (a) u, v ∈ C, or
(b) ({u,w}, v) ∈M or ({v, w}, u) ∈M , for some grid
point w ∈ C.

In case (a) by condition (i) of step 4, we have
d(u, v) ≥ `′. Since {u, v} = {f(x), f(y)}, from
Lemma 4(i) we obtain d(x, y) ≥ `′ − δ

√
d = `(1− ε).
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In case (b) by the construction of B in step 5, we
have d(u, v) ≥ `′. Since {u, v} equals either {f(x), y}
or {x, f(y)}, from Lemma 4(i) we obtain d(x, y) ≥
`′ − δ

√
d/2 ≥ `(1− ε).

(2) Assume now that a tour T of P with scatter
at least ` exists, and that the solution is not trivially
found in step 1. Assume also w. l. o. g. that T has the
special structure described in Lemma 3, i. e., it consists
of hops and of edges entirely inside B′p. Consider an
edge {x, y} of T , such that x, y ∈ B′p. Then, after step
3, f(x), f(y) ∈ C holds, and we say that {x, y} maps
to {f(x), f(y)}. Consider now a hop of T , i. e., two
consecutive edges {x,w} and {w, y}, such that x, y ∈
B′p and w ∈ P \B′p. Then, after step 3, f(x), f(y) ∈ C
holds, and we say that the hop {x,w, y} virtually maps
to {f(x), f(y)}.

Consider now the values m and v guessed in step 4,
and let m∗({u, v}) be the number of edges in T that
map to {u, v}, and let v∗({u, v}) be the number of
hops in T that virtually map to {u, v}. Since every
point in T has degree 2, it follows that the number of
edges and hops mapped to an edge incident to some
u ∈ C is twice the number of points in P mapped to
u. Furthermore, for all edges {x, y} ⊆ B′p of T , we

have d(f(x), f(y)) ≥ ` − δ
√
d = `′ (by Lemma 4(i)).

Therefore, guessing the correct values m = m∗ and
v = v∗ is consistent with the conditions in step 4.

Let {x1, w1, y1}, . . . , {xk, wk, yk} denote all the hops
in T , where wi ∈ P \B′p, for all i. Let ui = f(xi), and

vi = f(yi), and let us call M(T ) =
{(
{ui, vi}, wi

)
| i =

1, . . . , k
}

the hop-matching of T . Observe that M(T )
is a valid perfect matching for the graph B constructed
in step 5, therefore, step 6 will succeed. We cannot,
however, guarantee that M(T ) will be revovered in
step 6. Observe that any other perfect matching M
of B corresponds to a shuffling of the points wi in B,
and thus it is a hop-matching of a tour T ′ in which
the points wi have been correspondingly shuffled. T ′

differs from T only in its hops, and by construction
of B in step 5, we see that T ′ must have a scatter at
least `′ − δ

√
d/2.

It can be seen easily that the edges of T ′ are mapped
to an Eulerian tour of the multigraph H constructed
in step 7, and thus, step 8 succeeds. Again, we cannot
guarantee that the recovered Eulerian tour is the same
as the one to which T ′ maps. Any Eulerian tour of
H, however, must respect the edge-multiplicities of H,
which in turn are determined by the number of points
that map to each vertex of H. Therefore, step 9 must
succeed, and the output is Yes.
Note. The restrictions on m and v in step 4

can be strengthened, resulting in a smaller number
of iterations (and thus better running time). For
instance, since each virtual edge corresponds to a
hop via a point outside of B′p, we could require
the values of v to sum to |P \ B′p|. We ignore
such technicalities, as they do not affect the cor-

rectness of the algorithm – in the case of wrong
values, we get the No output in some of the later steps.

Running time. The cost of steps 1–3 is dominated
by the cost of the loop starting in step 4. We observe
that by Lemma 4(ii), |C| ≤ (9.8

√
d/ε)d. Steps 5 and

6 amount to finding a perfect matching, and steps 7
and 8 amount to finding an Eulerian tour, both in a
graph with O(n) vertices. As for step 4, observe that
the values of the functions m and v over all pairs in C
sum to |P ∩B′p| ≤ n, so we need to consider at most(
n
|C|2
)

ways of distributing a value of at most n into

the integer values of m and v. Multiplying, and using
a standard bound on the binomial, we obtain that the

running time is at most O(n|C|
2+3) = O

(
n(100d/ε

2)d
)

.

This concludes the proof of Theorem 1.
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