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Ramsey-type theorems for lines in 3-space

Jean Cardinal∗ Michael S. Payne† Noam Solomon‡

Abstract

We prove geometric Ramsey-type statements on col-
lections of lines in 3-space. These statements give
guarantees on the size of a clique or an independent
set in (hyper)graphs induced by incidence relations
between lines, points, and reguli in 3-space. Among
other things, we prove the following:

• The intersection graph of n lines in R3 has a
clique or independent set of size Ω(n1/3).

• Every set of n lines in R3 has a subset of
√
n

lines that are all stabbed by one line, or a subset

of Ω
(

(n/ log n)
1/5

)
lines such that no 6-subset is

stabbed by one line.

• Every set of n lines in general position in R3 has
a subset of Ω(n2/3) lines that all lie on a regulus,
or a subset of Ω(n1/3) lines such that no 4-subset
is contained in a regulus.

The proofs of these statements all follow from geomet-
ric incidence bounds – such as the Guth-Katz bound
on point-line incidences in R3 – combined with Turán-
type results on independent sets in sparse graphs and
hypergraphs. As an intermediate step towards the
third result, we also show that for a fixed family
of plane algebraic curves with s degrees of freedom,
every set of n points in the plane has a subset of
Ω(n1−1/s) points incident to a single curve, or a sub-
set of Ω(n1/s) points such that at most s of them lie
on a curve. Although similar Ramsey-type statements
can be proved using existing generic algebraic frame-
works, the lower bounds we get are much larger than
what can be obtained with these methods. The proofs
directly yield polynomial-time algorithms for finding
subsets of the claimed size.

1 Introduction

Ramsey theory studies the conditions under which
particular discrete structures must contain certain
substructures. Ramsey’s Theorem says that for every
n, every sufficiently large graph has either a clique
or an independent set of size n. Early geometric
Ramsey-type statements include the Happy Ending
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Problem on convex quadrilaterals in planar point
sets, and the Erdős-Szekeres Theorem on subsets in
convex position [7].

We prove a number of Ramsey-type statements
involving lines in R3. Our proofs combine two main
ingredients: geometric information in the form of
bounds on the number of incidences among the
objects, and a Turán-type theorem that converts this
information into a Ramsey-type statement.

Ramsey’s Theorem for graphs and hypergraphs
only guarantees the existence of rather small cliques
or independent sets. However for the geometric re-
lations we study the bounds are known to be much
larger. Therefore we are interested in finding the cor-
rect asymptotics. In particular, we are interested in
the Erdős-Hajnal property. A class of graphs has this
property if each member with n vertices has either a
clique or an independent set of size nδ for some con-
stant δ > 0. The results presented here make use of
important recent advances in combinatorial geometry,
a key example of which is the bound on the number
of incidences between points and lines in R3 given
by Guth and Katz [10] in their recent solution of the
Erdős distinct distances problem.

1.1 A general framework

In general we consider two classes of geometric ob-
jects P and Q in Rd and a binary incidence relation
contained in P × Q. For a finite set P ⊆ P and an
integer t ≥ 2, we say that a t-subset S ∈

(
P
t

)
is de-

generate whenever there exists q ∈ Q such that every
p ∈ S is incident to q. Hence the incidence relation
together with the integer t induces a t-uniform hy-
pergraph H = (P,E), where E ⊆

(
P
t

)
is the set of

all degenerate t-subsets of P . A clique in this hyper-
graph is a subset S ⊆ P such that

(
S
t

)
⊆ E. Simi-

larly, an independent set is a subset S ⊆ P such that(
S
t

)
∩ E = ∅.

In what follows, the families P and Q will mostly
consist of lines or points in 3-space. We are interested
in Erdős-Hajnal properties for the t-uniform hyper-
graph H.

1.2 Previous results

When P is a set of points, finding a large indepen-
dent set amounts to finding a large subset of points in
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some kind of general position defined with respect to
Q. When Q is the set of points, we are dealing with
intersections between the objects in P. In particular,
the case t = 2 corresponds to the study of geometric
intersection graphs.

A set in Rd is usually said to be in general position
whenever no d + 1 points lie on a hyperplane. For
points and lines in the plane, Payne and Wood proved
that the Erdős-Hajnal property essentially holds with
exponent 1/2 [16]. Cardinal et al. proved an analo-
gous result in Rd [3].

Theorem 1 ([16, 3]) Fix d ≥ 2. Every set of n
points in Rd contains

√
n cohyperplanar points or

Ω((n/ log n)1/d) points in general position.

In both cases, the proofs rely on incidence bounds,
in particular the Szemerédi-Trotter Theorem [19] in
the plane, and the point-hyperplane incidence bounds
due to Elekes and Tóth [6] in Rd. We streamlined the
technique used in those proofs in order to easily apply
it to other incidence relations.

A survey of Erdős-Hajnal properties for geometric
intersection graphs was produced by Fox and Pach [8].
A general Ramsey-type statement for the case where
P is the set of plane convex sets was proved by Lar-
man et al. [14] more than 20 years ago. They showed
that any family of n such sets contained at least n1/5

members that are either pairwise disjoint or pairwise
intersecting. Larman et al. also showed that there
exist arrangements of k2.3219 line segments with at
most k pairwise crossing and at most k pairwise dis-
joint segments. This lower bound was improved suc-
cessively by Károlyi et al. [12], and Kyncl [13].

More recently Fox and Pach studied intersection
graphs of a large variety of other geometric objects [9].
In particular, they proved the Erdős-Hajnal property
for families of s-intersecting curves in the plane – fam-
ilies such that no two curves cross more than s times.
Erdős-Hajnal properties for hypergraphs have been
proved by Conlon, Fox, and Sudakov [5].

A very general version of the problem for the case
t = 2 has been studied by Alon et al. [1]. Here
Ramsey-type results are provided for intersection rela-
tions between semialgebraic sets of constant descrip-
tion complexity in Rd. It was shown that intersec-
tion graphs of such objects always have the Erdős-
Hajnal property. The proof combines a linearisation
technique with a space decomposition theorem due to
Yao and Yao [20]. As an example, Alon et al. ap-
plied their machinery to prove that every family of n
pairwise skew lines in R3 contains at least k ≥ n1/6

elements `1, `2, . . . , `k such that `i passes above `j for
all i < j. For the problems we consider, however,
the exponents we obtain are significantly larger than
what can be obtained from this method.

A more general version of this problem for arbitrary
values of t has recently been studied by Conlon et

al. [4], for which the Ramsey numbers grow like towers
of height t− 1.

1.3 Our results

Section 2 deals with the case where P and Q are lines
and points in R3. A natural object to consider is the
intersection graph of lines in R3, for which we prove
the Erdős-Hajnal property with exponent 1/3. This
makes use of the Guth-Katz incidence bound between
points and lines in R3 [11].

Section 3 deals with the setting where both P and
Q are lines in R3. We prove that every set of n lines
in R3 has a subset of

√
n lines that are all stabbed by

one line, or a subset of Ω
(

(n/ log n)
1/5

)
such that no

6-subset is stabbed by one line. The proof involves
the Ramsey-type result on points and hyperplanes
due to Cardinal et al. [3], which in turn relies on a
point-hyperplane incidence bound due to Elekes and
Tóth [6].

Finally, in Section 4 we introduce the notion of a
subset of lines in general position in R3 with respect to
reguli, defined as loci of lines intersecting three pair-
wise skew lines. This uses the Pach-Sharir bound on
incidences between points and curves in the plane [15].

The large subsets whose existence our results guar-
antee can be found in polynomial time.

Omitted proofs are given in a long version of the
paper1.

2 Points and lines in R3

We consider the setting in which the family P is the
set of lines in R3 and Q = R3. The first subcase
we consider is t = 2, or in other words, intersection
graphs of lines.

Theorem 2 The intersection graph of n lines in R3

has a clique or independent set of size Ω(n1/3).

We now sketch the proof, that combines Turán’s The-
orem with the Guth-Katz bounds [11, Theorem 4.5]
and [11, Theorem 2.11]. The latter can be shown to
yield the following.

Lemma 3 Given a set L of n lines, so that no plane
or regulus contains more than s lines, and no point
is incident to more than ` lines of L, the number of
line-line incidences is O(n3/2 log `+ ns+ n`).

(We recall that ω(G) and α(G) denote the clique and
independence number of a graph G, respectively.)

Lemma 4 Consider a set L of n lines in R3, such that
no plane contains more than s lines, and no point is
incident to more than ` lines of L. Let G be the

1http://arxiv.org/abs/1512.03236
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intersection graph of L. If s, ` . n1/2, then α(G) &√
n/ log `. Moreover, if r := max{s, `} & n

1
2+ε for

some ε > 0, then α(G) & n/r.

Proof. If there is some regulus containing at least
n1/2 lines, we divide the lines into the two rulings of
the regulus. One ruling contains at least half the lines,
hence α(G) & n1/2. We may therefore assume that
the number of lines contained in a common regulus is
at most n1/2.

If s, ` ≤ n1/2, the first term in the bound in
Lemma 3 dominates, and applying Turán’s Theorem
gives α(G) &

√
n/ log `. If r ≥ n 1

2+ε, one of the latter
terms dominates, and we apply Turán’s Theorem to
get α(G) & n/r. �

Proof. [Theorem 2] Suppose that such a graph G has
α(G) � n1/3. Then by Lemma 4, max{s, `} & n2/3.
If ` & n2/3 we are done, so s & n2/3. Therefore,
we may assume that there is a plane containing n2/3

lines. Divide these lines into classes of pairwise paral-
lel lines. If some class contains at least n1/3 lines, we
have α(G) & n1/3. Otherwise, there are at least n1/3

distinct classes. Choosing one line from each class
yields a clique of size n1/3. �

Note that the Erdős-Hajnal property for intersec-
tion graphs of lines in R3 can be directly established
from Alon et al. [1], but with a much smaller expo-
nent. For t = 3, we also obtain a three-dimensional
version of the dual of the result of Payne and Wood
(Theorem 1 with d = 2).

Theorem 5 Consider a collection L of n lines in R3,
such that at most s lie in a plane, with s ≤ n/ log n.
Then there exists a point incident to

√
n lines, or a

subset of Ω(
√
n) lines such that at most two intersect

in one point.

3 Stabbing lines in R3

Three lines in R3 are typically intersected by a fourth
line, except in certain degenerate cases. Thus it makes
sense to study configurations of lines in R3, and to
consider a set of 4 or more lines degenerate if all its
elements are intersected by another line. Here we pro-
vide a result for 6-tuples of lines.

We define a 6-tuple of lines to be degenerate if all
six lines are intersected (or “stabbed”) by a single line
in R3. We call this line a stabbing line for the 6-tuple
of lines. So in our framework this is the setting in
which both P and Q are the set of lines in R3, and
t = 6.

We make use of the Plücker coordinates and co-
efficients for lines in R3, which are a common
tool for dealing with incidences between lines, see
e.g. Sharir [17]. We prove the following Ramsey-type
result for stabbing lines in R3.

Theorem 6 Let L be a set of n lines in R3. Then
either there is a subset of

√
n lines of L that are

all stabbed by one line, or there is a subset of

Ω
(

(n/ log n)
1/5

)
lines of L such that no 6-subset is

stabbed by one line.

Theorem 6 is an immediate consequence of the fol-
lowing generalisation of Theorem 1. The difference is
that the set of hyperplanes H is arbitrary instead of
being the set of all hyperplanes in Rd. The proof is
similar to that of Cardinal et al. [3].

Theorem 7 Let H be a set of hyperplanes in Rd.
Then, every set of n points in Rd with at most ` points
on any hyperplane in H, where ` = O(n1/2), contains

a subset of Ω
(

(n/ log `)
1/d

)
points so that every hy-

perplane in H contains at most d of these points.

We also have a simple construction for the following
upper bound.

Theorem 8 For every constant integer t ≥ 4, there
exists an arrangement L of n lines in R3 such that
there is no subset of more than O(

√
n) lines that are

all stabbed by one line, nor any subset of more than
O(
√
n) lines with no t stabbed by one line.

4 Lines and reguli in R3

Consider the case in which P is the class of lines in
R3, Q is the class of reguli, and t = 4. Let P be a set
of n lines, and assume that the lines in P are pairwise
skew. Every triple of lines in P therefore determines
a single regulus, and we may consider the set of all
reguli determined by P . We consider the containment
relation rather than intersection – we are interested
in 4-tuples that all lie in the same regulus.

In order to prove our result, we first consider the
case where P = R2 and Q is a family of algebraic
curves of bounded degree. We define the number of
degrees of freedom of a family of algebraic curves C
to be the minimum value s such that for any s points
in R2 there are a constant number of curves passing
through all of them. Moreover, C has multiplicity
type r if any two curves in C intersect in at most
r points. The proof of the following uses the Pach-
Sharir bounds on the number of incidences between
points and curves [15].

Theorem 9 Consider a family C of bounded degree
algebraic curves in R2 with constant multiplicity type
and s degrees of freedom, for some s > 2. Then in
any set of n points in R2, there exists a subset of
Ω(n1−1/s) points incident to a single curve of C, or a
subset of Ω(n1/s) points such that at most s of them
lie on a curve of C.
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We now come back to our original question in which P
is the class of lines in R3, Q is the class of reguli, and
t = 4. Here we restrict the finite arrangement P ⊂ P
to be pairwise skew, that is, pairwise nonintersecting
and nonparallel. Recall that a regulus can be defined
as a quadratic ruled surface which is the locus of all
lines that are incident to three pairwise skew lines.
There are only two kinds of reguli, both of which are
quadrics – hyperbolic paraboloids and hyperboloids
of one sheet [18].

Theorem 10 Let L be a set of n pairwise skew lines
in R3. Then there are Ω(n2/3) lines on a regulus, or
Ω(n1/3) lines, no 4-subset of which lies on a regulus.

The bounds can be shown to be tight.

Theorem 11 There exists a set P of n pairwise skew
lines in R3 such that there is no subset of more than
O(n2/3) lines on a regulus, and no more than O(n1/3)
lines such that no 4-subset lies on a regulus.

Note that Aronov et al. [2] proved an upper bound
on the number of incidences between lines and reguli
in 3-space, from which one may derive an alternative
proof of Theorem 10.
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