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Fair and Square: Cake-Cutting in Two Dimensions
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Abstract

A polygonal land-estate (“cake”) has to be divided
among n agents. The division should satisfy the fol-
lowing two requirements: (a) Each piece should have
a pre-specified geometric shape, such as a square. (b)
Each agent should receive a piece with a value above
a given threshold. The value of a piece is defined
as the integral of a given value-density function over
the piece. Each agent has a possibly different value-
density, yet each agent should agree that the value of
his piece is above the fairness threshold. Each of the
two requirements has been studied before on its own:
the geometric requirement is common in polygon de-
composition problems, and the value requirement is
common in the classic economics problem known as
“fair cake-cutting”. Our research combines these re-
quirements. We present algorithms for dividing a
square cake in a way both fair (in value) and square
(in shape). The value guarantee per agent is Θ(1/n),
where the constants depend on the cake shape.

1 Introduction

Several people inherited a land-estate. How can they
divide it fairly among them?

Geometric division. Division problems are abun-
dant in computational geometry. A survey from 2000
[5] lists over 100 papers about different variants of
such problems. A typical problem involves a given
polygon C and a given family S of polygons (trian-
gles, squares, rectangles, star-shapes, spirals, etc). C
should be partitioned to several components which are
elements of S (henceforth S-elements). The partition
should satisfy such requirements as: minimizing the
number of pieces, minimizing the total perimeter of
the pieces, etc. Sometimes it is also required that the
pieces have the same area, e.g. [2, 6]. But the value
of land is much more than its shape and area. For
example, a land-plot near the sea may have a very
different value than a land-plot with exactly the same
shape and area in the middle of the desert. Geometric
partition problems do not handle such considerations.

Economic division. Division problems are also
abundant in economics and social choice. The land
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Figure 1: Dividing a square fairly to two agents.

division problem is often called cake-cutting [3, 8].
There, value considerations are of key importance.
Moreover, economists acknowledge that different peo-
ple have different valuations. One person may pre-
fer the sea-shore while another person may prefer the
mountains. Hence, value is defined on an agent-by-
agent basis: each agent i has a bounded and integrable
value-density function on the cake, vi : C → R. The
value of a piece X to agent i is defined as the integral
of the value-density: Vi(X) :=

∫
x∈X vi(x)dx. The Vi

thus defined are nonatomic measures, so there are no
atoms which cannot be fairly divided.

An allocation of C is an n-tuple X1, . . . , Xn of
pairwise-disjoint subsets of C: X1 ∪ · · · ∪ Xn ⊆ C.
An allocation is called fair or proportional if every
agent is allotted a piece he values as at least 1/n the
total cake value: ∀i : Vi(Xi)/Vi(C) ≥ 1/n. Algo-
rithms for finding fair allocations have been used since
Biblical times. A famous algorithm for two agents
is ”cut and choose”: the cake C is partitioned to
two parts C ′, C ′′ which have the same value for Al-
ice (VA(C ′) = VA(C ′′) = VA(C)/2); the part more
valuable to Bob is given to Bob and the other part is
given to Alice. Thus both Alice and Bob are guaran-
teed a piece worth at least half their total cake value.
This algorithm has been generalized to n agents in
the 1940s [10] and many new algorithms have been
published over the years [7]. But in contrast to the ge-
ometric partition problems, most of these algorithms
do not pay much attention to the geometric shape
of the pieces. Typically, C is assumed to be a 1-
dimensional interval and the pieces are either intervals
or a countable collection thereof (see the full paper [9]
for some exceptions). While a 1-dimensional division
can be projected on a two-dimensional cake, the re-
sulting pieces might be long and narrow slivers that
are unusable in practice.

Our division. We claim that both geometric
shape and fair value are important. The input in our
problem is a polygonal cake C, a family S of polygons
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Figure 2: Uncover numbers of various cakes. S is the family of squares.

and n nonatomic value-measures V1, . . . , Vn. We are
looking for S-allocations - allocations of C in which
∀i : Xi ∈ S. A simple example, illustrated in Figure
1, shows that the ideal of fairness, giving each agent
at least 1/n of the total cake value, cannot always be
satisfied. Here C is square and there are n = 2 agents,
Disc and Triangle. The value-density of the Disc agent
is 1 inside the discs and 0 outside; the value-density of
the Triangle agent is 1 inside the triangles and 0 out-
side (a). When S is the family of rectangles, it is easy
to give each agent 1/2 of the total value (b). When S
is the family of squares, it is easy to give each agent
1/4 of the total value (c), but impossible to give both
agents more than 1/4. This motivates the following:

Definition 1 Prop(C, S, n) is the largest proportion
f ∈ [0, 1] such that, for every set of n nonatomic value-
measures (V1, . . . , Vn), there exists an S-allocation
(X1, ..., Xn) of C for which ∀i : Vi(Xi)/Vi(C) ≥ f .

One-dimensional cake-cutting algorithms, e.g. [4],
imply that Prop(Interval, Intervals, n) = 1/n.
By a projection argument, this also implies that
Prop(Rectangle,Rectangles, n) = 1/n. As we have
just seen (Figure 1), Prop(Square, Squares, 2) ≤ 1/4.

Prop(C, S, n) is a purely geometric function: its
value depends only on n and the geometric shapes of
C and S. Intuitively, it describes how well the family
S can be used to fairly divide C. This function is the
focus of our research. We study many different com-
binations of C and S. For every such combination,
we look for impossibility results like Figure 1 prov-
ing upper bounds on Prop, and division algorithms
proving lower bounds on Prop. In the present ab-
stract we illustrate some of our methods focusing on
several simple cases: the cake C is a square, a quarter-
plane or an unbounded plane (where the value-density
functions always have a bounded support), and S is
the family of squares. Section 2 presents impossibil-
ity results and Section 3 presents division algorithms.
Many other combinations are described in [9], includ-
ing arbitrarily-shaped cakes and arbitrary fat pieces.

2 Impossibility results

The key geometric tools used in our impossibility re-
sults are uncovers and uncover-numbers. They gen-

eralize the anti-squares studied e.g. by [1], who also
show the duality between them and square-covers.

Definition 2 (a) Let I be a set of discs contained in
C. I is called an n-S-uncover in C if in any set of n
pairwise-disjoint S-elements contained in C, at least
one S-element overlaps only at most one disc of I.

(b) The n-S-uncover number of C,
UncovNum(C, S, n), is the maximum cardinality
of an n-S-uncover in C.

Some examples are illustrated in Figure 2. In (a),
C is a rectilinear hexagon. The three discs are a 1-
square-uncover, because any 1 square contained in C
overlaps at most one disc. In (b), C is a quarter-plane
and the three discs are a 2-square-uncover: any square
that overlaps two or more discs must contain the “x”
in its interior. Hence, in any set of 2 disjoint squares
contained in C, at least one square overlaps at most
one disc. Similarly in (c), C is a square and the four
discs are a 2-square-uncover.

New uncovers can be constructed from existing ones
using deflation. Let IK and IM be two copies of the
2-square-uncover of (b). Remove the bottom-left disc
of IM and deflate IK such that all its three discs are
contained in the previous location of that bottom-left
disc. The result is the set of 5 discs in (d). We claim
that it is a 3-square-uncover: there is at most one
square overlapping two discs of the deflated IK and at
most one square overlapping two discs of IM , so all in
all there are at most two disjoint squares overlapping
two discs of the arrangement in (d).

In general, we can prove the following Deflation
Lemma: if IK is a k-S-uncover containing K discs
and IM is an m-S-uncover containing M discs, then
(under certain conditions that we omit here) it is pos-
sible to deflate IK into IM to get a (k + m − 1)-S-
uncover containing K + M − 1 discs. This lemma
allows us to construct (d) from (b) (with m = k = 2
and M = K = 3) and to construct (e) from (b)+(c)
(m = k = 2 and M = 4 and K = 3).

Let IM be an m-S-uncover with M discs. By recur-
sively applying the Deflation Lemma, we can (under
certain conditions) deflate IM into one of its own discs
to get uncovers with as many discs as we want. For
every n ≥ 1, it is possible to get an (n−1)(m−1)+1-
S-uncover having (n − 1)(M − 1) + 1 discs. Tak-
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Figure 3: Division algorithm for dividing a square cake to 2 agents who want square pieces.

ing IM to be the 2-square-uncover in (b), we build,
for every n ≥ 2, an n-square-uncover I2n−1 having
2n− 1 discs in a quarter-plane, proving that ∀n ≥ 1 :
UncovNum(QuarterP lane, Squares, n) ≥ 2n− 1.

Deflating the set I2n−3 into the bottom-left disc
of (c) gives, for every n ≥ 2, an n-square-uncover
having 2n discs in a square. This proves that ∀n ≥
2 : UncovNum(Square, Squares, n) ≥ 2n.

The following lemma links the uncover numbers to
fair cake-cutting:

Lemma 1 For every cake C, family S and n ≥ 1:

Prop(C, S, n) ≤ 1/UncovNum(C, S, n)

Proof. Let m = UncovNum(C, n, S) and let Im be
an n-S-uncover of cardinality m in C. Assume that
the cake C is a desert and the elements of Im are
water-pools. Assume that all n agents have the same
value-density function, which assigns a value of 1 to
each pool and is 0 outside the pools. By Definition
2, in every allocation of n S-elements, at least one S-
element overlaps at most one pool. The agent receiv-
ing this piece has a value of at most 1 = V (C)/m. �

With the uncover numbers from above, we get:

Corollary 2 a. Prop(Square, Squares, n) ≤ 1/(2n);
b. Prop(QuarterP lane, Squares, n) ≤ 1/(2n− 1).

3 Division algorithms

The key geometric tools used in our positive results
are covers and cover numbers.

Definition 3 (a) An S-cover of C is a set of S-
elements whose union equals C.
(b) The S-cover number of C, CoverNum(C, S), is
the minimum cardinality of an S-cover of C.

For example, it is easy to see that for the hexagon in
Figure 2/a, CoverNum(C, Squares) = 3, since it can
be covered by a set of 3 squares (and no set of 1 or 2
squares can cover it).

Lemma 3 For every cake C and family S:

Prop(C, S, 1) ≥ 1/CoverNum(C, S)

Proof. By the pigeonhole principle, if there is an S-
cover of C with m elements, then one of these elements
must have a value of at least V (C)/m. �

We now present an introductory division algorithm.
C is a square, S the family of squares and there are
n = 2 agents, Alice and Bob. Without loss of gener-
ality, we scale the value-densities of the agents such
that the value of the entire cake is exactly 4 for both
of them. By the example of Figure 1 and by Corollary
2, we already know that the largest value that can be
guaranteed to both agents is 1. Our algorithm indeed
guarantees each agent a value of at least 1.

The algorithm is illustrated in Figure 3 and it pro-
ceeds as follows. (a) Partition C to 4 quarters in a 2×2
grid and calculate the value of each quarter according
to each agent. For each agent, select a quarter with a
value of at least 1 (such a quarter must exist by the
pigeonhole principle). (b) If the selected quarters are
different, then give each agent his/her selected quar-
ter and finish. Here it is easy to satisfy both agents
since each agent prefers a different geographic region
- Alice likes the south-west and Bob likes the north-
east. (c) If the selected quarter is the same, then (d)
for each agent, mark inside the selected quarter, a
corner-square with a value of exactly 1 for that agent.
(e) Cut a corner-square between the two marks. Give
it to the agent associated with the smaller mark (Al-
ice, in this case); that agent obviously receives a value
of at least 1. For the other agent (Bob), the value of
the remaining L-shape is at least 3. Cut a square
from the remaining L-shape with a value of at least
1 (such a square must exist by Lemma 3) and give it
to Bob. Note that Bob’s square is larger than Alice’s
square; this makes sense, since Alice won a square in
the south-west, which, according to both agents, is a
valuable region. So Bob is compensated by winning a
larger plot.

This algorithm proves Prop(Square, Squares, 2) ≥
1/4, which matches the upper bound of Corollary 2.

There are several ways to generalize this algorithm
to n agents. We present here high-level sketches of the
algorithms and refer the reader to [9] for more details.

Algorithm 1. For dividing a square cake, we use
a ”recursive quartering” technique. The cake is par-
titioned to four quarters as in Figure 3/a. The value
of each quarter according to each agent is calculated.



32nd European Workshop on Computational Geometry, 2016

a.

1
2

3

4
b. c.

Figure 4: Dividing a 4-staircase.

The agents are assigned to quarters based on their
values: each agent is assigned to a quarter which is
more valuable to that agent (considering the number
of other agents assigned to that quarter). Then, each
quarter is divided recursively to the agents assigned to
it (handling some special cases which we omit here).
If done correctly, this algorithm guarantees to each
agent a value of at least 1, when the value of the orig-
inal cake is normalized to 4n − 4. This proves that:
Prop(Square, Squares, n) ≥ 1/(4n − 4). This has a
multiplicative gap of 2 from the upper bound of Corol-
lary 2. We know how to close this gap in the special
case of n agents with identical value measures.

Algorithm 2. For dividing a quarter-plane cake,
we use a ”staircase carving” technique. We want
to match the upper bound of Corollary 2 which is
1/(2n − 1). To do this, we generalize and handle
a cake in the shape of a staircase. A staircase is
a polygonal domain which is bounded in two sides
(e.g. left and bottom) but open in the other two
sides. A k-staircase is a staircase that has k inner
corners (see Figure 4/a). A quarter-plane is a 1-
staircase. In every k-staircase, it is easy to find an
n-square-uncover with 2n− 2 + k discs, so by Lemma
1, Prop(k staircase, Squares, n) ≤ 1/(2n−2+k). The
following algorithm matches this bound.

Assume that n agents (with different value-
densities) value the k-staircase as 2n − 2 + k. For
each corner j and agent i, mark a corner-square in
corner j with a value of exactly 1 for agent i. In
each corner, keep only one smallest square. There
are two cases. Easy case: at least one square is en-
tirely contained in its corner (like the square in corner
4 in Figure 4/b). Cut this square and give it to its
agent. The remaining cake is a (k + 1)-staircase and
its value for the remaining n − 1 agents is at least
2n− 3 + k = 2(n− 1)− 2 + (k + 1) so we can divide it
to them recursively. Hard case: all squares flow over
their corners, casting ”shadows” on the corners above
and/or to their right. We cannot just cut a square be-
cause the result will not be a staircase. Fortunately,
we can prove the following geometric lemma: there al-
ways exists a square whose shadows are entirely con-
tained in the other squares (like the square in corner
2 in Figure 4/c). Cut this square, give it to its agent,
and discard its shadow/s. The value of each shadow
to the other agents is at most 1; each removed shadow

removes one corner and decreases k by 1; hence, the
remaining n− 1 agents still value the remaining cake
as at least 2(n−1)−2+k′ (where k′ is the new number
of corners) and we can proceed recursively.

This shows that Prop(k staircase, Squares, n) =
1/(2n− 2 + k). By letting k = 1 we get a tight result:
Prop(QuarterP lane, Squares, n) = 1/(2n− 1).

Algorithm 3. Assume that C is an unbounded
plane. Similarly to Algorithm 1, partition it to
four quarter-planes and partition the agents to four
groups according to their valuations. Then, di-
vide each quarter-plane to its agents using Algo-
rithm 2. A calculation in [9] gives, for all n ≥ 4:
Prop(Plane, Squares, n) ≥ 1/(2n− 4). The table be-
low summarizes the results presented in this abstract:

Cake Lower Upper

Square 1/(4n− 4) 1/(2n)
1/4-plane 1/(2n− 1) 1/(2n− 1)

Plane 1/n 1/(2n− 4)

For an unbounded plane we do not have an upper
bound (other than the trivial upper bound of 1/n).
Hence, we conclude with an open question: Is it pos-
sible to divide an unbounded plane such that each of
n agents receives a square piece worth at least 1/n?
Is it possible to divide the plane “fair and square”?
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