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Abstract

We study the problem of finding witness sets for poly-
gons which can be used as a first step to solve the
problem of guarding art galleries. For a polygon P , a
set W ⊆ P is called a witness set if every set G that
guards W , is guaranteed to guard P . Previous study
exists for computing a minimal witness set of points
for polygons. However, very few polygons admit wit-
ness sets of points. Here we propose an algorithm for
computing witness sets of points, line segments and,
if necessary, regions in O(n4) time. The output wit-
ness set is shown to be minimal if the input polygon
has one, otherwise is shown to be near-minimal (as
defined later in the paper). This algorithm also de-
termines whether guarding the boundary of a polygon
is sufficient to guard the entire polygon.

1 Introduction

The Art Gallery Problem (AGP) was proposed by
Klee to Chvatal in 1973 as a challenge to find the
point locations of a minimum number of guards such
that each point on the walls of an art gallery is seen
by at least one guard [3]. In general, gallery interior
needs to be guarded as well. Both the original [4] and
the generic [6] versions of AGP are proven to be NP-
hard. It is clear that a solution for the generic version
also guards the wall, but the reverse proposition is not
the case. Over the years many other versions of AGP
have also been studied as surveyed in [7, 9].

A common approach to solve AGP for a polygon P
employs integer programming and uses a formulation
with two parameters: AGP(X,Y ), where X,Y ⊆ P ,
X is the set of possible guard locations and Y is the
set of points to be guarded [8]. Note that AGP(X,P )
and AGP(P, Y ) are upper and lower bounds respec-
tively on the minimum number of guards. Various
heuristics are used to initialize X and Y and then
iteratively insert elements into them until lower and
upper bounds converge.

The original witnessability problem formulation is
credited to Joseph Mitchell in a paper by Chwa et
al. [2]. A witness set W of a polygon P is defined
as a set such that if any set G that guards W also
guards P . The straight-forward use of witnessabil-
ity concept is checking the visibility of a subset of a
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Figure 1: Three polygons admitting no witness set
of points only. (Left) polygon has a minimal witness
set of points and segments. (Middle) polygon has no
minimal witness set but a near-minimal one, as it is
necessary to include vv+ε. (Right) polygon has a min-
imal witness set of three points and an interior region.

polygon instead of the whole polygon from a guard
set. If a witness set consists of lower dimensional el-
ements there can be further algorithmic advantages.
Another use is within the initialization step of the
integer programming approach discussed above. Us-
ing appropriate witness points as Y results in early
convergence. Unfortunately, not all polygons admit a
finite witness set of points (See Figure 1).

Here we extend the concept of witnessability us-
ing sets with points, line segments and if necessary
regions. We propose an algorithm that finds a (near)-
minimal witness set and, as a consequence, determines
whether a solution for AGP(P , ∂P ) guarantees a so-
lution for AGP(P , P ) i.e., ∂P is a witness set for P .

2 Preliminaries

The input for the witnessability problem is a sim-
ple (non-convex) polygon P with n vertices where
int(P ), and ∂P denote the interior and the bound-
ary of P , respectively. For a reflex vertex v of P ,
let v−ε, v+ε ∈ ∂P be two infinitesimally close points
to v on clockwise and counter-clockwise traversals, re-
spectively. Next, we review some concepts and results
from [2].

Two points p, q ∈ P see each other if the whole line
segment pq is in P . If a point p in P sees a reflex
vertex v of P and the ray −→pv continues in P after
hitting v then we say p sees past v. If the exterior
part of the polygon is on the left side of −→pv in the
immediate neighborhood of v then we say p sees past
left v. Similarly, if the exterior is on the right, p sees
past right v. (See Figure 2). For an edge e of P in
counter-clockwise orientation, the half-plane induced
by e is the set of points on the left side of the line
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through e and is denoted as l+(e). For two points
p, v ∈ P such that p sees past left (right) v, let l+(p, v)
denote the half-plane that is right (left) of the line −→pv.
The closures of the half-planes l+(e) and l+(p, v) are
denoted as lc(e) and lc(p, v).

The set of points in P that can be seen from a point
p ∈ P is called the visibility polygon of p [5], denoted
as V(p). The set of points that can see every point
in V(p) is called the visibility kernel of p, denoted as
VK(p). For a set of points S, we use VK(S) as the
union of the visibility kernels of the points in S.

A witness set can also be defined as a finite set W ⊆
P such that, for any set of point guards G in P , W ⊆⋃
g∈G V(g) implies

⋃
g∈G V(g) = P . If W is a witness

set for P , then W is said to witness P . The same
verb, to witness, can also be used with other geometric
entities like points, if seeing the subject guarantees the
object to be seen. A witness set W for P is said to
be minimal if there exists no proper subset of W that
witnesses P . If there exists a minimal witness set for
P , then P is a minimalizable polygon. Otherwise, P
is a non-minimalizable polygon.

Theorem 1 [2]. A point set W is a witness set for
a polygon P if and only if VK(W ) = P . Also the
following statements are equivalent for p, q ∈ P :
(i) p witnesses q; (ii) q ∈ VK(p); (iii) VK(q) ⊆ VK(p).

Let p be a point on the boundary of P . Let E(p)
denotes the set of edges of P of which p sees at least
one interior point. We define RM(p), as the short
form of rightmost vertex of p, the first vertex that
p sees past left in counter-clockwise order from the
viewpoint of p as the rightmost vertex with respect to
p and denote as. The leftmost vertex of p, LM(p),
is defined symmetrically. If p does not see past left
(right) any vertex, then we set RM(p)(LM(p)) as the
next vertex on ∂P in (counter-)clockwise order. Then,
as proven by Chwa et al. [2], we have:

VK(p) = lc(p,RM(p)) ∩ lc(p, LM(p)) ∩
⋂

f∈E(p)

lc(f) (1)

3 Minimal and near-minimal witness sets

In this section, we define the lemmas and theorems to
be used in our algorithm that finds a (near)-minimal
witness set for a simple polygon.

3.1 Witnesses on the boundary of the polygon

We define anchor points to subdivide the boundary
of the input polygon. Anchor points consist of three
types: 1. The vertices of the polygon. 2. For each
reflex vertex, the boundary points where the exten-
sion of each of the two edges incident to it hit first.
3. For every pair of reflex vertices that see past each
other, the boundary points where the two extensions
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Figure 2: Partition of a polygon boundary and induc-
ing line segments and their extensions. v1(Type 1),
p3(Type 2) and p1(Type 3) are three of the 32 anchor
points. The line segment v1v3 is a cross line but v1v2
is not. Here, p1 sees past right v1 while p2 sees past
left v1.

of the line segment between them hit first (See Fig-
ure 2). The line segments between two consecutive
anchor points are anchor edges.

Observation 1 Every point on an anchor edge sees
past left and right the same set of reflex vertices (due
to Type 2 anchor points). Also these points (par-
tially) sees the same set of edges (due to Type 3 an-
chor points). Moreover the leftmost and the right-
most reflex vertices a point sees past is the same for
all points within an anchor edge.

We classify the boundary points of P exclusively
into five types according to the vertices they see past
left and/or right. If a boundary point p doesn’t see
past any vertex except the ones incident to the edge(s)
p belongs to, it is of Type Z (See Figure 3). If there
exists a vertex p sees past left but there are no vertices
p sees past right, then p is of Type L. The symmetric
version of Type L is Type R. If there exist a vertex
p sees past left and another vertex p sees past right,
there are two possibilities: If VK(p) = {p}, then we
say that p is of Type D. Otherwise, p is of Type N.
Since the type of points within an anchor edge is the
same, we also use these types for anchor edges.

p
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Figure 3: p1 is of Type R, p2 is of Type Z, p3 is of
Type N, p4 is of Type L, p5 is of Type D

Lemma 2 Let e be an anchor edge, and p and p′ be
any two interior points of e in counter-clockwise order.
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If e is of Type L, then p witnesses p′. Similarly if e is
of Type R, then p′ witnesses p.

Proof. Consider the case e is of Type L. Notice that
E(p) = E(p′) from Observation 1. Hence, p′ ∈⋂
f∈E(p) lc(f) =

⋂
f∈E(p′) lc(f). Due to the orienta-

tion of p and p′ along the boundary p′ ∈ lc(p,RM(p)).
From (1), we have p′ ∈ VK(p) and from Theorem 1
p witnesses p′. The symmetric case can be proven
similarly. �

Theorem 3 Let e be an anchor edge, v1 and v2 be
the endpoints of e in counter-clockwise order, and p
be an interior point of e. Let A =

⋂
f∈E(p) l

c(f), B =

l+(v1, RM(p)) ∪ RM(p), and C = l+(v2, LM(p)) ∪
LM(p). VK(e) can be calculated using finitely many
half-plane intersections:
(a) If e is of Type D, then VK(e) = e
(b) If e is of Type Z, then VK(e) = A
(c) If e is of Type L, then VK(e) = A ∩B
(d) If e is of Type R, then VK(e) = A ∩ C
(e) If e is of Type N, then VK(e) = A ∩B ∩ C

Proof. (a) It follows from the definition of Type D.
(b) From (1) we have:

VK(e) =
⋃
q∈e
VK(q) =

⋃
q∈e

⋂
f∈E(q)

lc(f) = A

(c) From (1), Theorem 1 and Lemma 2, we have:

VK(e) =
⋃
q∈e
VK(q) =

⋃
q∈e

(lc(q,RM(q)) ∩
⋂

f∈E(q)

lc(f))

= A ∩
⋃
q∈e

lc(q,RM(q)) = A ∩B

(d) The symmetric case of part (c).
(e) From (1), we know that VK(p) ⊂ A, hence
VK(e) ⊆ A. Also, due to the orientation of the
points on e, A ∩ lc(p,RM(p)) ⊂ A ∩ B. With
this and the symmetrical equivalent, we can see that
VK(e) ⊆ A ∩B ∩ C.

To prove the equivalence, we need to show that ev-
ery point in A ∩ B ∩ C needs to be witnessed by a
point on e. When p approaches to v1, VK(p) con-
verges to A ∩ B ∩ lc(v1, LM(p)). With this and the
symmetric version, we have (A∩((B∩ lc(v1, LM(p))∪
(C ∩ lc(v2, RM(p))) ⊂ VK(e). For the rest of the
points, let r be a point in (A ∩ B ∩ C) \ (A ∩ ((B ∩
lc(v1, LM(p))∪(C∩lc(v2, RM(p))). Let r′ be the first
point the ray −→v1r hit on ∂P . Observing that r′ ∈ e
implies r ∈ VK(r′). �

3.2 Witnesses in the interior of the polygon

For every pair of reflex vertices that see past left each
other or see past right each other, line segment be-
tween them is called a cross line (See Figure 2). A

point p ∈ P \ VK(∂P ) is called a ordinary point if it
is not on a cross line.

Proofs of Lemmas 4-8 are omitted due to space lim-
itations. They can be found in the complete version.

Lemma 4 Let p is a point on the cross line vu that is
not in VK(∂P ). If p is not on the closure of VK(∂P ),
then VK(p) = {p}. Otherwise VK(p) ⊆ vu.

Lemma 5 A ordinary point p can only witness itself,
i.e., VK(p) = {p}. Moreover p is present in every
witness set of P .

3.3 Minimal witness sets

Following lemmas establish the groundwork of our re-
sults on minimal witness sets.

Lemma 6 Let p and q be distinct points. If VK(p) ⊂
VK(q), then p cannot be in any minimal witness set.

Lemma 7 If a point p is in VK(∂P ) \ ∂P then p
cannot be in any minimal witness set.

Lemma 8 If a point p on ∂P is not witnessed by an-
other point on ∂P , then p has to be in every minimal
witness set.

Theorem 9 A minimal witness set consist of a set of
boundary elements, all ordinary points, and at least
one point on each cross line that is in P \ VK(∂P ).

Proof. Let p ∈ P . Then p has to be one of these three
disjoint sets: VK(∂P ), ordinary points and points on
cross lines that are not in VK(∂P ). Lemma 5 states
that ordinary points are in any witness set including
a minimal one. Lemma 7 states that the points that
are in VK(∂P )\∂P cannot be in any minimal witness
set. Points on cross lines that are not in VK(∂P )
needs to have at least one point in a minimal witness
set according to Lemma 4. �

It is clear that not all polygons admit unique min-
imal witness sets as we can choose any point on a
Type Z anchor edge and, for some cases, any point on
a cross line. Other than those, the ordinary points are
proven to be necessary in any witness set via Lemma
5. Also the points that are witnessed by ∂P proven
not to be in any minimal witness set via Lemma 7.
Therefore miminal witness sets for P differ by finitely
many points and the cardinalities of them are equal.

3.4 Near-minimal witness sets

Suppose we have an edge segment with points Type
L (R) and the left (right) endpoint of the segment is
a reflex vertex. Using Lemma 2 we can show that for
any point p, there is another point on the left (right)
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of p that witnesses p. However the line segment is
open and we cannot reach on the left (right) endpoint
of the line segment but we need to keep at least one
point arbitrarily close to the reflex vertex. For these
cases, we use the infinitesimally short line segments
pp−ε or pp+ε in the witness set. (See Figure 1)

Definition 1 (Near-minimality) Let W be a witness
set for a non-minimalizable polygon P . W is near-
minimal if it can be divided into two disjoint sets,
Wmin and Wε such that Wε consist of finitely many
infinitesimally short line segment and removal of any
element from Wmin or Wε makes W to violate the
witnessing condition of W . We also call each element
of Wε as an ε-witness.

Analogous results to Lemmas 7, 8, and Theorem 9
for near-minimal witness sets are rather immediate,
however omitted here for the sake of brevity.

4 Algorithm

We use a subdivision of the polygon based on an ar-
rangement of line segments of following three types: 1.
Extensions of edges that are incident to reflex vertices
until they hit other boundary points. 2. For each an-
chor point p, the line segments from p to LM(p) and
RM(p). 3. For each anchor edge v1v2, let p be an
interior point of v1v2; the line segments from v1 to
RM(p) and from v2 to LM(p). We denote this sub-
division as A(P ) (stored as a doubly connected edge
list) and the contiguous regions in the interior of the
arrangement as cells.

Let W be a candidate (near-)minimal witness set
initialized to be empty. For each cell c, we record the
number of elements in W that witnesses c as count(c).
For each directed line segment s of A(P ), incident to
cells cl and cr, ∆count(s) stores count(cl)−count(cr).
Each line segment is marked once it is witnessed. The
algorithm consists of five steps:

1. Find the anchor points and the edges they (par-
tially) see: For this purpose, we simply employ a stan-
dard linear time visibility algorithm [5] per vertex re-
sulting in a total cost of O(n2) time.

2. Compute A(P ): There can be at most O(n2) line
segments, therefore it takes O(n2 log n+k) time where
k is the number of intersecting points [1], which is in
O(n4). Hence, the total time for this step is O(n4).

3. Find the elements of a (near-)minimal witness
set on ∂P : The visibility kernel of each anchor point
or edge is contiguous and inclusive. Therefore we can
traverse the boundary of the visibility kernel starting
from the anchor point or edge. When we insert an el-
ement b to W , we traverse the boundary of VK(b) in
counter-clockwise order and we increment the ∆count
value of each line segment by one and decrement the
∆count of the opposite direction. When we remove an

element fromW , which happens when another bound-
ary point witnesses an element on W , we backtrack
this increment/decrement. For Type N and D, the
whole line segments are inserted to W . To keep the
minimality of W , for Type D, we chose the middle
point to be inserted to W . For Type L (R), we in-
sert the left (right) endpoint of the line segment to
W if it is not a reflex vertex. If the endpoint is a
reflex vertex, we insert an ε-witness incident to the
corresponding end point. Note that the visibility ker-
nels of both anchor points and anchor edges are con-
vex. Therefore, each of O(n2) line segments of A(P )
can intersect a visibility kernel twice. There can be
at most O(n2) visibility kernels. Therefore this step
costs O(n4) time.

4. Find the cells of a (near-)minimal witness set
in int(P ): The count values can be retrieved start-
ing from a boundary cell and using the ∆count values
of incident line segments of A(P ). At the end, we
insert the cells that have witness count 0 and the un-
witnessed line segments of A(P ) that are not in the
closure of VK(∂P ) to W . As a last step, we traverse
each line segment s on the boundary of VK(∂P ). If
s /∈ VK(∂P ) we insert either s or a single point of s
depending if s is on a cross line. This step is done in
O(n4) time.

If there exists no ε-witness element in W then W is
minimal. Otherwise the polygon is not minimalizable
and W is near-minimal. If step 4 does not find an el-
ement in int(P ), then ∂P witnesses P . As we can see
from the steps, the algorithm works in O(n4) time.
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