
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Grouping Time-varying Data for Interactive Exploration

Arthur van Goethem∗ Marc van Kreveld† Maarten Löffler† Bettina Speckmann∗ Frank Staals‡

1 Introduction

We present algorithms and data structures that sup-
port the interactive analysis of the grouping structure
of one-, two-, or higher-dimensional time-varying data
while varying all defining parameters. Grouping struc-
tures (which track the formation and dissolution of
groups) characterize important patterns in the evolu-
tion of sets of time-varying data. We follow Buchin et
al. [4] who define groups using three parameters: group-
size, group-duration, and inter-entity distance.

Trajectory grouping structure [4]. Let X be a set
of n entities moving in Rd and let T denote time.
The entities trace trajectories in T× Rd. We assume
that each individual trajectory is piecewise linear and
consists of at most τ vertices. Two entities a and b
are ε-connected at time t if there is a chain of entities
a = c1,.., ck = b such that for any pair of consecutive
entities ci and ci+1 the distance at time t is at most
ε. A set G is ε-connected, if for any pair a, b ∈ G,
the entities are ε-connected. Given parameters m, ε,
and δ, a set of entities G is an (m, ε, δ)-group during
time interval I if (and only if) (i) G has size at least
m, (ii) duration(I) ≥ δ, and (iii) G is ε-connected at
any time t ∈ I. An (m, ε, δ)-group (G, I) is maximal
if G is maximal in size or I is maximal in duration,
that is, if there is no group H ⊃ G that is also ε-
connected during I, and no interval J ⊃ I such that
G is ε-connected during J .

Results and Organisation. We describe a data struc-
ture D that represents the grouping structure, that
is, its maximal groups, while allowing efficient change
of the parameters. The complexity of the problem
appears already in one-dimensional time-varying data.
Hence we restrict our description to R1, the full paper
extends our results to higher dimensions.

If all three parameters m, ε, and δ can vary inde-
pendently the question arises what constitutes a mean-
ingful maximal group. Consider a maximal (m, ε, δ)-
group (G, I). If we slightly increase ε to ε′, and con-
sider a slightly longer time interval I ′ ⊇ I then (G, I ′)
is a maximal (m, ε′, δ)-group. Intuitively, these groups
(G, I) and (G, I ′) are the same. Thus, we are interested

∗Department of Mathematics and Computer Science, TU
Eindhoven, [a.i.v.goethem|b.speckmann]@tue.nl
†Dept. of Computing and Information Sciences, Utrecht Uni-

versity, The Netherlands, [m.j.vankreveld|m.loffler]@uu.nl
‡MADALGO, Aarhus University, Denmark,

f.staals@cs.au.dk

only in (maximal) groups that are “combinatorially
different”. The set of entities G may also be a maximal
(m, ε, δ)-group during a time interval J completely dis-
joint from I, we also wish to consider (G, I) and (G, J)
to be combinatorially different groups. In Section 2 we
formally define when two (maximal) (m, ε, δ)-groups
are (combinatorially) different. We prove that there
are at most O(|A|n2) such groups, where A is the
arrangement of the trajectories in T× R1, and |A| is
its complexity. We also argue that the number of max-
imal groups may be as large as Ω(τn3), even for fixed
parameters m, ε, and δ and in R1. This significantly
strengthens the lower bound of Buchin et al. [4]. In Sec-
tion 3 we present an O(|A|n2 log2 n) time algorithm to
compute all combinatorially different maximal groups.

In the full paper we describe a data structure that
allows us to efficiently obtain all groups for a given set
of parameter values. We also describe data structures
for the interactive exploration of the data. Specifically,
given the set of maximal (m, ε, δ)-groups we want to
change one or more of the parameters and efficiently
report only those maximal groups which either ceased
to be a maximal group or became one. Our data
structures can answer symmetric-difference queries [5].

2 Combinatorially Different Maximal Groups

We consider entities moving in R1, hence the trajecto-
ries form an arrangement A in T× R1. Consider the
four-dimensional parameter space P with axes time,
size, distance, and duration. A set of entities G defines
a region AG in which it is alive: a point (t,m, ε, δ) lies
in AG if and only if G is an (m, ε, δ)-group at time t.
These regions help define when groups are combinato-
rially different. We start by fixing m = 1 and δ = 0
to define and count the number of combinatorially
different maximal (1, ε, 0)-groups, over all choices of
parameter ε. Theorem 6 and Lemma 7 extend these
results to include other values of δ and m.

Consider the (t, ε)-plane in P through δ = 0 andm =
1. The intersection of all regions AG with this plane
are the points (t, ε) for which G is a (1, ε, 0)-group.
Note that G is a (1, ε, 0)-group at time t if and only
if the set G is ε-connected at time t. AG, restricted
to this plane, is simply connected. Furthermore, as
the distance between any pair of entities moving in
R1 varies linearly, AG is bounded from below by a t-
monotone polyline fG. The region is unbounded from
above: if G is ε-connected (at time t) for some value ε,

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

32nd European Workshop on Computational Geometry, 2016

then it is also ε′-connected for any ε′ ≥ ε (see Fig. 1).
Every maximal length segment in the intersection
between (the restricted) AG and the horizontal line `ε
at height ε corresponds to a (maximal) time interval I
during which (G, I) is a (1, ε, 0)-group, or an ε-group
for short. Every such a segment corresponds to an
instance of ε-group G.

Observation 1 Set G is a maximal ε-group on I, iff
the line segment sε,I = {(t, ε) | t ∈ I} is a maximal
length segment in AG, and is not contained in AH , for
a supergroup H ⊃ G.

Two instances of ε-group G may merge. Let v be a
local maximum of fG and I1 = [t1, vt] and I2 = [vt, t2]
be two instances of group G meeting at v. At vε,
the two instances G that are alive during [t1, vt] and
[vt, t2] merge and we now have a single time interval
I = [t1, t2] on which G is a group. We say that I is
a new instance of G, different from I1 and I2. We
can thus decompose AG into maximally-connected
regions, each corresponding to a distinct instance of
group G, using horizontal segments through the local
maxima of fG. We further split each region at the
values ε where G changes between being maximal and
being dominated. Let PG denote the obtained set of
regions in which G is maximal. Each such a region
P corresponds to a combinatorially distinct instance
on which G is a maximal group (with at least one
member and duration at least zero). The region P is
bounded by at most two horizontal line segments and
two ε-monotone chains (see Fig. 1(b)).

Counting maximal ε-groups. To bound the number
of distinct maximal ε-groups, over all values of ε, we
count the number of polygons in PG over all sets G.
Consider a distinct instance (a set of entities G and a
region P ∈ PG) of the maximal ε-group G. All vertices
of P lie on the polyline fG: they are either vertices of
fG, or they are points (t, ε) on the edges of fG where
G starts or stops being maximal. Any vertex is used
by at most a constant number of regions from PG.

Below we show that the complexity of the arrange-
ment H, of all polylines fG over all G, is bounded by

O(|A|n). Furthermore, we show that each vertex of
H can be incident to at most O(n) regions. It follows
that the complexity of all polygons P ∈ PG, over all
groups (sets) G, and thus also the number of such sets,
is at most O(|A|n2).

The complexity of H. The span SG(t) = {a | a ∈
X ∧ a(t) ∈ [minb∈G b(t),maxb∈G b(t)]} of a set of
entities G at time t is the set of entities between the
lowest and highest entity of G at time t. Let ha(t)
denote the distance from entity a to the entity directly
above a at time t, that is, ha(t) is the height of the
face in A that has a on its lower boundary at time t.

Observation 2 A set G is ε-connected at time t, if
and only if the largest nearest neighbor distance among
the entities in SG(t) is at most ε. Hence

fG(t) = max
a∈SG(t)

ha(t)

It follows that H is actually the arrangement of the
n functions ha, for a ∈ X . We use this fact to show
that H has complexity at most O(|A|n):

Lemma 1 Let A be an arrangement of n line seg-
ments, and let k be the maximum number of line
segments intersected by a vertical line. The number
of triplets (F, F ′, x) such that the faces F ∈ A and
F ′ ∈ A have equal height h at x-coordinate x is at
most O(|A|k) ⊆ O(|A|n) ⊆ O(n3).

Lemma 2 The arrangement H has size O(|A|n).

It remains to show that each vertex v of H can be
incident to at most O(n) polygons from different sets.
Lemma 3 follows from Buchin et al. [4]:

Lemma 3 Let R be the Reeb graph for a fixed value
ε capturing the movement of a set of n entities mov-
ing along piecewise-linear trajectories in Rd (for some
constant d), and let v be a vertex of R. There are at
most O(n) maximal groups that start or end at v.

Lemma 4 Let v be a vertex ofH. Vertex v is incident
to at most O(n) polygons from P =

⋃
G⊆X PG.

R

(a) (b)

o

r

p

v

timetime

Figure 1: (a) A set of trajectories for a set of entities moving in R1 (b) The region A{r,v} during which {r, v} is
alive, and its decomposition into polygons, each corresponding to a distinct instance. In all such regions, except
the top one {r, v} is a maximal group: in the top region {r, v} is dominated by {r, v, o} (darker region).

EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Lemma 5 The number of distinct ε-groups, over all
values ε, and the total complexity of all regions P =⋃

G⊆X PG, are both at most O(|H|n) = O(|A|n2).

Theorem 6 Let X be a set of n entities, in which
each entity travels along a piecewise-linear trajectory
of τ edges in R1, and let A be the resulting trajectory
arrangement. The number of distinct maximal groups
is at most O(|A|n2) = O(τn4), and the total complex-
ity of all regions in the parameter space corresponding
to these groups is also O(|A|n2) = O(τn4).

Lemma 7 For a set X of n entities, in which each
entity travels along a piecewise-linear trajectory of τ
edges in R1, there can be Ω(τn3) maximal ε-groups.

3 Algorithm

We now refer to combinatorially different maximal
groups simply as groups. Our algorithm computes a
representation (of size O(|A|n2)) of all groups, which
we can use to list all groups and, given a pointer to a
group G, list all its members and the grouping polygon
QG ∈ PG. We assume δ = 0 and m = 1.

We use the arrangement H in the (t, ε)-plane. Line
segments in H correspond to the height function of
the faces in A. Let a, b ∈ SG(t) be the pair of consec-
utive entities in the span of a group G with maximum
vertical distance at time t. The critical pair (a, b) de-
termines the minimal value of ε such that the group G
is ε-connected at time t. The distance between (a, b)
defines an edge of the polygon bounding G in H.

Our representation consists of the arrangement H
in which each edge e is annotated with a data struc-
ture Te, a list L with the top edge in each grouping
polygon QG ∈ PG, and a data structure S to support
reconstructing the grouping polygons.

We compute H in O(|H|) = O(τn3) time [1]. Given
H we use a sweep line algorithm to construct the
representation. A horizontal line `(ε) is swept at height
ε upwards, and all groups G whose grouping polygon
QG currently intersects ` are maintained. To achieve
this we maintain a two-part status structure. First, a
set S with for each group G the time interval I(G, ε) =
QG ∩ `(ε). We can implement S using any standard
balanced binary search tree. Second, for each edge
e ∈ H intersected by `(ε) a data structure Te with the
sets of entities whose time interval starts or ends at
e, that is, G ∈ Te if and only if I(G, ε) = [s, t] with
s = e ∩ `(ε) or t = e ∩ `(ε). The data structures Te
support the operations listed below.

In addition, we store with each interval I(G, ε) a
pointer to the previous version of the interval I(G, ε′)
if (and only if) the starting time (ending time) of G
changed to a different edge at ε′.

The data structure Te. We need a data structure T =
Te that supports Filter, Insert, Delete, Merge,
Contains, and HasSuperSet efficiently. We describe
a structure of size O(n), that supports Contains and
HasSuperSet in O(log n) time, Filter in O(n) time,
and Insert and Delete in amortized O(log2 n) time.
In general, answering Contains and HasSuperSet
queries in a dynamic setting is hard and may require
O(n2) space [6].

Lemma 8 Let G and H be two non-empty ε-groups
that both end at time t. We have:

(G ∩H 6= ∅ ∧ |G| ≤ |H|)⇐⇒ G ⊆ H ∧G 6= ∅.

We implement T with a tree similar to the grouping-
tree used by Buchin et al. [4]. Let {G1,.., Gk} denote
the groups stored in T , and let X ′ =

⋃
i∈[1,..,k]Gi de-

note the entities in these groups. Our tree T has a leaf

Operation Input Action

Filter(Te, X) A data structure Te
A set of entities X

Create a data structure T ′ = {G ∩ X |
G ∈ Te}

Insert(Te, G) A data structure Te
A pointer to a representation of G

Create a data structure T ′ = Te ∪ {G}.

Delete(Te, G) A data structure Te
A pointer to a representation of G

Create a data structure T ′ = Te \ {G}.

Merge(Te, Tf) Two data structures Te, Tf , belonging to
two edges e, f having the same starting
or ending vertex

Create a data structure T ′ = Te ∪ Tf .

Contains(Te, G) A data structure Te
A pointer to a representation of G ending
or starting on edge e

Test if Te contains set G.

HasSuperSet(Te, G) A data structure Te
A pointer to a representation of G ending
or starting on edge e

Test if Te contains a set H ⊇ G, and
return the smallest such set if so.

32nd European Workshop on Computational Geometry, 2016

for every entity in X ′. Each group Gi is represented by
an internal node vi. For each internal node vi the set of
leaves in the subtree rooted at vi corresponds exactly
to the entities in Gi. By Lemma 8 these sets indeed
form a tree. With each node vi, we store the size of
Gi, and an arbitrary entity in Gi. We preprocess T in
O(n) time to support level-ancestor (LA) queries as
well as lowest common ancestor (LCA) queries, using
the methods of Bender and Farach-Colton [2, 3]. Both
methods work only for static trees, whereas we need
updates to T as well. Since we query Te only when
processing the upper end vertex of e, we can be lazy
in updating Te and simply rebuild Te when needed.

HasSuperSet and Contains queries. Using LA
queries we can do a binary search on the ancestors
of a given node. This allows us to implement both
HasSuperSet(Te, G) queries and Contains(Te, G)
in O(log n) time for a group G ending or starting on
edge e. Let a be an arbitrary element from group G.
If the data structure Te contains a node matching the
elements in G then it must be an ancestor of the leaf
containing a in T . That is, it is the ancestor that has
exactly |G| elements. By Lemma 8 there is at most
one such node. As ancestors get only more elements
as we move up the tree, we find this node in O(log n)
time by binary search. Similarly, we can implement
the HasSuperSet function in O(log n) time.

Insert, Delete, and Merge queries. The Insert,
Delete, and Merge operations on Te are performed
lazily; we execute them only when we get to the upper
vertex of edge e. At such a time we may have to
process a batch of O(n) such operations which we can
handle in O(n log2 n) time.

Lemma 9 Let G1,.., Gm be maximal ε-groups, or-
dered by decreasing size, such that: (i) all groups end
at time t, (ii) G1 ⊇ Gi, for all i, (iii) the largest group
G1 has size s, and (iv) the smallest group has size
|Gm| > s/2. We then have that Gi ⊇ Gi+1 for all
i ∈ [1,..,m− 1].

Lemma 10 Given two nodes vG ∈ T and vH ∈ T ′,
representing the set G respectively H, both ending at
time t, we can test if G ⊆ H in O(1) time.

Lemma 11 Givenm = O(n) nodes representing max-
imal ε-groups G1,.., Gm, possibly in different data
structures T1,.., Tm, that all share ending time t, we
can construct a new data structure T representing
G1,.., Gm in O(n log2 n) time.

The final function Filter can easily be implemented
in linear time by pruning the tree from the bottom up.

Lemma 12 We can handle each event in O(n log2 n)
time.

Reconstructing the grouping polygons. Given a
group G we can construct the complete grouping poly-
gon QG in O(|QG|) time, and list all group members
of G in O(|G|) time. We have access to the top edge
of QG. This is an interval I(G, ε̂) in S, specifically,
the version corresponding to ε̂, where ε̂ is the value at
which G dies as a maximal group. We then follow the
pointers to the previous versions of I(G, ·) to construct
the left and right chains of QG. When we encounter
the value ε̌ at which G is born, these chains either
meet at the same vertex, or we add the final bottom
edge of QG connecting them. To report the group
members of G, we follow the pointer to I(G, ε̂) in S.
This interval stores a pointer to its starting edge e,
and to a subtree in Te of which the leaves represent
the entities in G.

Analysis. The list L contains O(g) = O(|A|n2) entries
(Theorem 6), each of constant size. The total size
of all S’s is O(|H|n): at each vertex of H, there are
only a linear number of changes in the intervals in S.
Each edge e of H stores a data structure Te of size
O(n). It follows that our representation uses a total
of O(|H|n) = O(|A|n2) space. Handling each of the
O(|H|) nodes requires O(n log2 n) time, so the total
running time is O(|A|n2 log2 n).

Theorem 13 Given a set X of n entities, in which
each entity travels along a trajectory of τ edges, we can
compute a representation of all g = O(|A|n2) combina-
torial maximal groups G such that for each group G ∈
G we can report its grouping polygon and its mem-
bers in time linear in its complexity and size, respec-
tively. The representation has size O(|A|n2) and takes
O(|A|n2 log2 n) time to compute, where |A| = O(τn2)
is the complexity of the trajectory arrangement.

References

[1] N. Amato, M. Goodrich, and E. Ramos. Computing the
arrangement of curve segments: Divide-and-conquer
algorithms via sampling. In Proc. 11th ACM-SIAM
Symp. on Disc. Algorithms, pages 705–706, 2000.

[2] M. Bender and M. Farach-Colton. The LCA prob-
lem revisited. In LATIN 2000: Theoret. Informatics,
volume 1776 of LNCS, pages 88–94. Springer, 2000.

[3] M. Bender and M. Farach-Colton. The level ances-
tor problem simplified. Theoret. Computer Science,
321(1):5–12, 2004.

[4] K. Buchin, M. Buchin, M. van Kreveld, B. Speckmann,
and F. Staals. Trajectory grouping structure. J. of
Comput. Geom., 6(1):75–98, 2015.

[5] D. Eppstein, M. Goodrich, and J. Simons. Set-
difference range queries. In Proc. 2013 Canadian Conf.
on Comput. Geom., 2013.

[6] D. Yellin. Representing sets with constant time equality
testing. J. of Algorithms, 13(3):353–373, 1992.

