
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Dynamic Connectivity for Unit Disk Graphs∗

Haim Kaplan† Wolfgang Mulzer‡ Liam Roditty§ Paul Seiferth‡

Abstract

Let S ⊂ R2 be a set of point sites. The unit disk graph
UD(S) of S has vertex set S and an edge between two
sites s, t if and only if |st| ≤ 1.

We present a data structure that maintains the con-
nected components of UD(S) when S changes dynam-
ically. It takes O(log2 n) time to insert or delete a site
in S and O(log n/ log log n) time to determine if two
sites are in the same connected component. Here, n is
the maximum size of S at any time. A simple variant
improves the update time to O(log n log log n) at the
cost of a slightly increased query time of O(log n).

1 Introduction

Computing the connected components of a graph G
is one of the most fundamental problems in algorith-
mic graph theory. When G is static, several classic
solutions exist, e.g., BFS or DFS. However, if G can
change dynamically, the problem becomes much more
challenging. In this case, we would like a data struc-
ture for connectivity queries: given two vertices s and
t, are s and t in the same connected component of G?
Additionally, we would like to be able to insert and
delete edges or singleton vertices. For general graphs,
there is the following result due to Holm et al. [8].

Theorem 1 (Holm et al., Theorem 3) Let G be
a graph with n vertices. There is a deterministic
data structure such that edge insertions or deletions
in G take amortized time O(log2 n), and connectivity
queries take worst-case time O(log n/ log log n).

Even though Theorem 1 assumes n to be fixed, we can
use a standard rebuilding method to support vertex
insertion and deletion within the same amortized time
bounds, by rebuilding the data structure whenever
the number of vertices changes by a factor of 2. For
planar graphs, Eppstein et al. achieved O(log n) time
for both updates and queries [7].

However, the model of edge insertions and deletions
may be too restrictive. For example, one natural situ-
ation where more powerful operations are needed oc-
curs in unit disk graphs. Let S ⊂ R2 be a set of

∗Supported by GIF project 1161&DFG project MU/3501-1.
†Tel Aviv University, Israel. haimk@post.tau.ac.il
‡Institut für Informatik, Freie Universität Berlin, Germany

{mulzer,pseiferth}@inf.fu-berlin.de
§Bar Ilan University, Israel. liamr@macs.biu.ac.il

point sites. The unit disk graph UD(S) of S has ver-
tex set S and an edge between two sites s, t ∈ S if
and only if the Euclidean distance |st| is at most 1.
Now, we want to maintain the connected components
of UD(S) as the vertex set S changes dynamically.
In this case, a single update may change the graph
quite dramatically, since one site may have many in-
cident edges. Nevertheless, Chan et al. [5] observed
that by combining known results one can derive a data
structure with update time O(log10 n) and query time
O(log n/ log log n). The construction is as follows (see
Figure 1): ¬ let T be the Euclidean minimum span-

UD(S) DNN·O(log2 n)

updates

·O(log2 n) DBCP
1 2 3

Dynamic Connectivity DS

EMST

Figure 1: A solution with O(log10 n) update time.

ning tree (EMST) of S. If we remove all edges with
length larger than 1 from T , the resulting forest F is
a spanning forest for UD(S). Thus, to maintain the
components of UD(S), it suffices to maintain the com-
ponents of F . We create data structure D of Holm et
al. to maintain F . Since the EMST has maximum de-
gree 6, inserting or deleting a site from S changes O(1)
edges in T . Suppose we can efficiently find the set E
of edges that change during an update. Then, we can
update the components in F through O(1) updates in
D, taking all edges in E of length at most 1. ­ To
find E, we need to dynamically maintain the EMST
T when S changes. This can be done using a tech-
nique of Agarwal et al. that reduces the problem to
several instances of the dynamic bichromatic closest
pair problem (DBCP), with an overhead of O(log2 n)
in the update time [1]. ® Eppstein showed that the
DBCP problem can in turn be solved through a re-
duction to several instances of the dynamic nearest
neighbor problem (DNN) for points in the plane [6].
Again, we incur another O(log2 n) factor as overhead
in the update time. Using Chan’s DNN structure [4]
with amortized expected update time O(log6 n), we
get a total update time of O(log10 n). We can use D
to answer queries in O(log n/ log log n) time.

Our Results. We improve the previous result by fol-
lowing a similar approach, but in every step we use
a method more specifically tailored to unit disks. In-
stead of the EMST in ¬, we use a much simpler graph

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

32nd European Workshop on Computational Geometry, 2016

on grid cells that also captures the connectivity of
UD(S). Then we can avoid the O(log2 n) overhead in
­ and ® and substitute the DNN data structure by
a dynamic lower envelope (DLE) structure for pseu-
dolines in R2. In Section 2 we review suitable DLE
structures and their properties. In Section 3 we prove
our first main theorem:

Theorem 2 There is a dynamic connectivity struc-
ture for unit disk graphs such that the insertion
or deletion of a site takes amortized time O(log2 n)
and a connectivity query takes worst-case time
O(log n/ log log n), where n is the maximum number
of sites at any time.

In Section 4, we use a grid-based planar graph to
represent the connectivity of UD(S). Then we can
replace Theorem 1 by the result for planar graphs by
Eppstein et al. Updates now take O(log n log log n)
time, but the query time slightly increases to O(log n).

2 Dynamic Lower Envelopes

Let L be a set of pseudolines in the plane, i.e., each
element of L is a simple continuous curve and any two
distinct curves in L intersect in exactly one point.
The lower envelope of L is the pointwise minimum
of the graphs of the curves in L. In Section 3 we
need to dynamically maintain the lower envelope of
L. Overmars and van Leeuwen show how to maintain
the lower envelope of a set of lines with update time
O(log2 n) such that vertical ray shooting queries can
be answered in O(log2 n) time [10]. Chan improves
this to O(log1+ε) for updates and queries [3]. Using
the kinetic heap structure of Kaplan et al. [9] one can
obtain O(log n log log n). Brodal and Jacob showed
that the optimal bound O(log n) can be achieved [2].
Except for the last result, one can verify that all these
approaches also work with pseudolines; they only need
a total ordering of the lines along the lower envelope.

Lemma 3 Let L be a dynamic set of at most n pseu-
dolines. We can maintain the lower envelope of L with
O(log n log log n) amortized update time and O(log n)
amortized query time.

Remark. The applicability of the result by Brodal
and Jacob [2] is not clear to us, and poses an inter-
esting challenge for further investigation.

3 The Data Structure

Let S ⊂ R2 be a set of sites. We define an auxiliary
graph G that represents the connectivity of UD(S).
The vertices of G are cells of a grid. To see if two cells
form an edge, we maintain a bichromatic matching of
the sites in the grid cells. This matching is updated
with the help of two DLE data structures.

The Grid Graph (new ¬). Let G be a planar grid
whose cells are disjoint axis-aligned squares with di-
ameter 1. For any grid cell σ ∈ G, the sites σ ∩ S
induce a clique in UD(S). For S ⊂ R2, we define a
graph G whose vertices are the non-empty cells σ ∈ G,
i.e., the cells with σ ∩ S 6= ∅. The neighborhood N(σ)
of a cell σ ∈ G is the 5 × 5 block of cells in G with
σ in the center. We call two cells neighboring if they
are in each other’s neighborhood. The endpoints of
any edge in UD(S) must lie in neighboring cells. To
obtain the edges of G, we connect every pair of dis-
tinct neighboring grid cells that contain the endpoints
of an edge in UD(S). By construction, and since the
sites inside each cell form a clique, the connectivity
between two sites s, t in UD(S) is the same as for the
corresponding cells in G.

Lemma 4 Let s, t ∈ S be two sites and let σ and τ
be the cells in G that contain s and t, respectively.
There is an s-t path in UD(S) if and only if there is
a σ-τ path in G.

We build the data structure from Theorem 1 for G.
When a site s is inserted into or deleted from S, only
O(1) edges in G change, since only the neighborhood
of the cell of s is affected. Thus, once the set E of
changing edges is determined, we can update G in
time O(log2 n), by Theorem 1.

Finding the Edges E (new ­). It remains to find
the edges E of G that change when we update S. For
this, we maintain for each pair of non-empty neigh-
boring cells a maximal bichromatic matching (MBM)
between their sites, similar to Eppstein’s method [6].
Let R ⊆ S and B ⊆ S be two sets of sites. An MBM
between R and B is a maximal set of vertex-disjoint
edges in (R×B)∩UD(S), the bipartite graph on R∪B
consisting of all edges of UD(S) with one endpoint in
R and one endpoint in B.

For each pair {σ, τ} of neighboring cells in G, we
build an MBM M{σ,τ} for R = σ ∩ S and B = τ ∩ S.
By definition, there is an edge between σ and τ in G
if and only if M{σ,τ} is not empty. When inserting
or deleting a site s from S, we proceed as follows:
let σ ∈ G be the cell with s ∈ σ. We go through
all cells τ ∈ N(σ) and update the MBM M{σ,τ} (by
inserting or deleting s from the relevant set). IfM{σ,τ}
becomes non-empty during an insertion or becomes
empty during a deletion, we add the edge στ to E
and mark it for insertion or deletion, respectively. We
summarize this construction in the following lemma.

Lemma 5 Suppose we can maintain an MBM for
each pair of non-empty neighboring cells with update
time O(U(n)), where n is the maximum number of
sites. Then we can dynamically maintain the adja-
cency lists of G with update time O(U(n)).

EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Dynamically Maintaining an MBM (new ®). Let
σ 6= τ be two neighboring cells of G, and let R = σ∩S
and B = τ ∩ S. We show that an MBM between R
and B can be efficiently maintained using two DLE
structures for pseudolines. We fix a line ` that sep-
arates R and B. Since R,B are in two distinct grid
cells, we can take a supporting line of one of the four
boundaries of σ. We have the following lemma.

Lemma 6 Let R,B ⊆ S be two sets with a total of
at most n sites, separated by a line `. There exists a
dynamic data structure that maintains an MBM for
R and B with O(log n log log n) update time.

Proof. We rotate and translate everything such that
` is the x-axis and all sites in R have positive x-
coordinate. We consider the set UR of unit disks with
centers in R (see Figure 2). Then a site in B forms an
edge with some site in R if and only if it is contained
in the union of the disks in UR. To detect this, we
maintain the lower envelope of UR. More precisely,
consider the following set LR of pseudolines: for each
disk of UR, take the arc that defines the lower part
of the boundary of the disk and extend both ends
straight upward to ∞. We build a data structure DR

`

Figure 2: The set LR induced by R.

for LR according to Lemma 3. Analogously, we de-
fine a set of pseudolines LB and a dynamic envelope
structure DB for B.

To maintain the MBM M , we store in DR the cur-
rently unmatched sites of R, and in DB the currently
unmatched sites of B. When inserting a site r into R,
we perform a vertical ray shooting query in DB with
r to get a pseudoline of LB . Let b ∈ B the site for
that pseudoline. If |rb| ≤ 1, we add the edge rb to M ,
and delete the pseudoline of b from DB . Otherwise we
insert the pseudoline of r into DR. By construction, if
there is an edge between r and an unmatched site in
B, then there is also an edge between r and b. Hence,
the insertion procedure correctly maintains an MBM.
Now suppose we want to delete a site r from R. If
r is unmatched, we delete the pseudoline correspond-
ing to r from DR. Otherwise, we remove the edge rb
from M , and we reinsert b as above, looking for a new
unmatched site in R for b. Updating B is analogous.

Inserting and deleting a site requires O(1) inser-
tions, deletions, or queries in DR or DB , so the lemma
follows. �

To obtain Theorem 2, we combine Lemma 4,5, and 6.

4 Improving the Update Time

The bottleneck for the update time in Section 3 lies
in the use of Theorem 1. We now define a planar
graph Gp that is similar to the grid graph G: it rep-
resents the connectivity of UD(S) and an update of
S changes O(1) vertices and edges in Gp. These ver-
tices and edges can be found in O(1) time. Since Gp
is planar, we can use the result of Eppstein et al. to
maintain the connectivity of Gp with O(log n) amor-
tized update and worst-case query time [7], giving the
next theorem.

Theorem 7 There is a dynamic connectivity struc-
ture for unit disk graphs such that insertion or dele-
tion of a site takes amortized time O(log n log log n)
and a connectivity query takes worst-case time
O(log n), where n is the maximum number of sites
at any time.

The Planar Graph. Let S ⊂ R2 be a set of sites. For
any pair of non-empty grid cells σ, τ , let M{σ,τ} be the
MBM as above. For any non-empty MBM M{σ,τ}, we
pick an arbitrary edge rb ∈ M{σ,τ} with r ∈ σ and
b ∈ τ as representative edge. Let T ⊆ S be the set
of sites incident to a representative edge. We use the
unit disk graph UD(T) as basis for our planar graph
Gp. If we contract in each grid cell σ the subgraph of
UD(T) induced by T ∩σ to a single vertex, we get the
graph G from Section 3. Hence, by Lemma 4, UD(T)
represents the connectivity of UD(S).

To get Gp from UD(T), we consider the straight line
drawing of UD(T). For a crossing of two edges st and
uv in UD(T), we add a new site x at the intersection
and call x a crossing site. We remove st and uv and
we add the four new edges sx, xt, ux, and xv. We
repeat this operation until there are no more crossings
in UD(T). This is a standard method for making unit
disk graphs planar. The next lemma, due to Yan et
al. [11], shows that it preserves connectivity.

Lemma 8 Let ab and uv be edges in UD(T) that
cross. Then a, b, u, and v are in the same connected
component of UD({a, b, u, v}).

Using Lemma 8 we now show that Gp has the same
connectivity as UD(T). Thus, by Lemma 4, Gp rep-
resents the connectivity of UD(S).

Lemma 9 Let s, t ∈ T be two sites. Then s and t are
connected in UD(T) if and only if they are connected
in Gp.

Proof. Since going from UD(T) to Gp only increases
the connectivity, all sites s and t connected in UD(T)
are also connected in Gp.

For the other direction, let s = p1, . . . , pk = t be a
path in Gp between s, t ∈ T . For each pi, we define

32nd European Workshop on Computational Geometry, 2016

a set Vi ⊆ T as follows: if pi is a site in T , we set Vi
= {pi}. Otherwise, pi is a crossing site, created by
a crossing of two edges uv and ab in UD(T). We set
Vi = {a, b, u, v}. By Lemma 8, the sites a, b, u, v are
in the same connected component of UD(T). Further-
more, we have Vi−1 ∩ Vi 6= ∅, since pi−1pi is a proper
subsegment of an edge e in UD(T), and at least one
endpoint of e lies in Vi−1.

We prove by induction that all sites in
⋃j
i=1 Vi

lie in the same connected component of UD(T), for
j = 1, . . . , k. For j = 1, this is clear. Now, consider
Vj . If Vj−1 ∩ Vj 6= ∅, then the claim follows by induc-
tion, since all sites in Vj are in the same component.
Otherwise, Vj = {pj}, pj is a site in T , and there is

an edge in UD(T) between pj and
⋃j−1
i=1 Vi, implying

the claim. By setting j = k, we now have that s and
t are connected in UD(T). �

Maintaining Gp. We maintain an MBM between
any two neighboring non-empty grid cells and we pick
one representative edge for each MBM. Let s be a site
we want to insert or delete from S. Let σ be the grid
cell containing s. We update for all τ ∈ N(σ) the
MBM M{σ,τ}, and we collect the sites of all repre-
sentative edges that need to be inserted or deleted in
two sets I and D: if M{σ,τ} changes from empty to
non-empty, we pick a representative edge for M{σ,τ}
and put its two endpoints into I. If we delete the rep-
resentative edge of M{σ,τ}, we put its two endpoints
into D, and, if possible, we pick a new representative
edge for M{σ,τ}. We put the endpoints of the new
edge into I. Since |N(σ)| = O(1), the sets I and D
contain O(1) to be added or deleted from Gp.

Next, we show how to update Gp with a site s in
I or D. First we insert or delete s in UD(T) and
determine which edges change in UD(T). Each such
edge may create or delete several edges in Gp that
need to handled. The next lemma shows that s can
create or delete O(1) edges in Gp and that these edges
can be found in O(1) time. This finishes the proof of
Theorem 7.

Lemma 10 Let s be a site in I or D. Updating Gp
with s changes O(1) edges and vertices. They can be
found in O(1) time.

Proof. Suppose that s ∈ I, i.e., we want to insert s.
Let σ be the cell containing s. We add s to T and
collect all edges in UD(T) incident to s in a set E as
follows: we start with E = ∅. First, for each t ∈ T ∩σ
we add the edge st to E. Since σ has diameter 1,
all these edges are valid edges in UD(T). Next, we
go through all cells τ ∈ N(σ). We check for all sites
t ∈ τ ∩ T if |st| ≤ 1. If so, we add st to E.

To update Gp, we find all edges in Gp crossed by
edges in E. Since all edges in E and in Gp cross
O(1) grid cells, and since each grid cell contains O(1)

sites and crossing sites, this can be done in O(1) time.
We add all these edges to E, and we perform the
planarization procedure on E. This gives all edges
and vertices in Gp that need to be changed, in O(1)
time.

Deleting a site is done in a similar manner. �

References

[1] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf,
and E. Welzl. Euclidean minimum spanning trees
and bichromatic closest pairs. DCG, 6(5):407–
422, 1991.

[2] G. S. Brodal and R. Jacob. Dynamic planar con-
vex hull. In Proc. 43rd FOCS, pages 617–626,
2002.

[3] T. M. Chan. Dynamic planar convex hull opera-
tions in near-logarithmic amortized time. JACM,
48(1):1–12, 2001.

[4] T. M. Chan. A dynamic data structure for 3-D
convex hulls and 2-D nearest neighbor queries.
JACM, 57(3):Art. 16, 15, 2010.

[5] T. M. Chan, M. Pǎtraşcu, and L. Roditty. Dy-
namic connectivity: connecting to networks and
geometry. SICOMP, 40(2):333–349, 2011.

[6] D. Eppstein. Dynamic Euclidean minimum span-
ning trees and extrema of binary functions. DCG,
13:111–122, 1995.

[7] D. Eppstein, G. F. Italiano, R. Tamassia, R. E.
Tarjan, J. Westbrook, and M. Yung. Mainte-
nance of a minimum spanning forest in a dynamic
plane graph. J. Algorithms, 13(1):33–54, 1992.

[8] J. Holm, K. de Lichtenberg, and M. Thorup.
Poly-logarithmic deterministic fully-dynamic al-
gorithms for connectivity,minimum spanning
tree, 2-edge, and biconnectivity. JACM,
48(4):723–760, 2001.

[9] H. Kaplan, R. E. Tarjan, and K. Tsioutsiouliklis.
Faster kinetic heaps and their use in broadcast
scheduling (extended abstract). In Proc. 12th
SODA, pages 836–844, 2001.

[10] M. H. Overmars and J. van Leeuwen. Main-
tenance of configurations in the plane. JCSS,
23(2):166–204, 1981.

[11] C. Yan, Y. Xiang, and F. F. Dragan. Compact
and low delay routing labeling scheme for unit
disk graphs. CGTA, 45(7):305–325, 2012.

