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Abstract

Reconstructing a polygon from its visibility graph
is a fundamental problem, and it is still unknown
if simple polygons can be reconstructed in poly-
nomial time. We show that a restricted class of
polygons—orthogonally convex polygons with unit-
length edges—can be reconstructed from an n-vertex
visibility graph in O(n4) time.

1 Introduction

Recognizing visibility graphs and reconstructing their
polygons are fundamental problems that are known
to be in PSPACE [3], but it is still unknown if sim-
ple polygons can be recognized in polynomial time.
Therefore, most research has focused on finding ef-
ficient algorithms for restricted classes of polygons,
such as spiral [4] and funnel polygons [2]. Surpris-
ingly, very few results exist for even orthogonal poly-
gons: we are only aware of efficient algorithms to rec-
ognize convex fans, which consist of a single staircase
with an additional vertex [1]. Other algorithms for or-
thogonal polygons assume extra visibility information
is given, such as edge-edge visibility [7, Section 7.3],
or “vertical stabs,” which capture visibility between
vertical edges [6]. See Ghosh’s book [5] for a thorough
review of results on visibility graphs.

2 Preliminaries

Let P be a polygon on n vertices and edges. We say
that two points p and q are visible in P if line segment
pq is in P . Further, a visibility graph GP = (VP , EP )
of polygon P has a vertex vp ∈ VP for each vertex p
of P , and an edge (vp, vq) ∈ EP when vertices p and q
are visible in P . Edges in GP that are edges of P are
called boundary edges. Finally, we note that a max-
imal clique in GP corresponds to a maximal convex
region whose vertices are a subset of P ’s vertices.

Unit-Length Orthogonal Polygons. Let P be an
orthogonal polygon with unit-length edges, such that
no three consecutive vertices on P ’s boundary are
collinear. We call P a unit-length orthogonal polygon.
We call boundary edges between two convex vertices

∗Department of Information and Computer Sciences, Uni-
versity of Hawaii at Manoa, USA. E-mail: nodari@hawaii.edu
†Institute of Theoretical Informatics, Karlsruhe Institute of

Technology, Germany. E-mail: strash@kit.edu

in a unit-length orthogonal polygon P tab edges and
their vertices are called tab vertices.

We first note that there is a simple algorithm to
reconstruct a unit-length orthogonal polygon from its
visibility graph if we are given the boundary edges.

Observation 1 Given a visibility graph GP =
(VP , EP ) with n = |VP | vertices and m = |EP | edges
of a unit-length orthogonal polygon P and a Hamilto-
nian cycle H = v0, v1, . . . , vn−1 of the boundary edges
of P , we can reconstruct P in O(n + m) time.

Proof. Omitted. �

In this paper, we consider only unit-length polygons
that are orthogonally convex. That is, any two points
in P are visible via a staircase. We call such polygons
unit-length orthogonally convex polygons (UPs). We
now focus on finding the boundary edges of a UP,
which we can use to reconstruct it by Observation 1.

Properties of UPs. We assume that a UP is axis-
aligned, allowing us to use the compass analogy. Note
that UPs have four tab edges. We call the tab edge
with the largest y-coordinate the north edge, and we
similarly name the others the south, east, and west
edges. Furthermore, the remaining boundary edges
are divided into four staircases, which we refer to as
northwest, northeast, southeast, and southwest (i.e.,
staircases do not contain tab edges).

Note that, for brevity, we only consider polygons
with more than 12 vertices. This way, we avoid many
special cases in the smaller polygons.

Observation 2 In a visibility graph of a UP, there is
exactly one maximal clique containing all reflex ver-
tices. Moreover, this clique contains no tab vertex.

Lemma 1 Every convex vertex u in UP, has a convex
neighbor v such that (u, v) is in exactly one maximal
clique in the visibility graph of the UP.

Proof. If u is a tab vertex, then the other tab vertex
v is also convex and (u, v) is in exactly one maximal
clique. Otherwise, suppose w.l.o.g. that u is on the
northwest staircase. Then u has a convex neighbor v
on the southeast staircase, and (u, v) is in one maxi-
mal clique, which consists of u, v, the reflex vertices
within the rectangle R defined by u and v as the op-
posite corners, and any other corners of R that are
convex vertices of the polygon. �
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Figure 1: Edges incident to a reflex vertex are contained in at least two maximal cliques.

Lemma 2 For any edge (u, v) in the visibility graph
of a UP, if u or v is reflex, then (u, v) is in at least
two maximal cliques. (See Figure 1.)

Proof. Let (u, v) ∈ EP and suppose that at least one
of u and v is reflex. Suppose w.l.o.g that u is a reflex
vertex on the northwest staircase.

Case 1: Vertex v is reflex. Then u and v are in
the maximal clique containing all reflex vertices and
no tab vertex, plus u and v see a common tab vertex;
therefore (u, v) is in at least two maximal cliques.

For the remaining cases, we assume that v is convex.
Case 2a: Edge (u, v) is a boundary edge. Assume

w.l.o.g. that (u, v) is a vertical edge on the northwest
staircase and v is above u. If (u, v) is adjacent to the
north tab edge, then it is in two maximal cliques: a
rectangular clique containing the edge opposite to the
tab, and a clique containing an east tab vertex. Sup-
pose (u, v) is not adjacent to the north tab edge. Then
u and v see at least 2 convex vertices on the south-
east staircase. Thus there are at least two maximal
cliques, each containing one of these convex vertices.

We now assume that (u, v) is not a boundary edge.
Case 2b: Edge (u, v) is an axis-aligned visibility

edge. We assume w.l.o.g. that (u, v) is a horizontal
edge and overlaps boundary edge (v, w). Then v is ei-
ther on the north- or southeast staircase. If v is on the
northeast staircase, u and v are in a maximal clique
containing u’s boundary neighbor to the west, and one
containing u,w, v and all reflex vertex vertices south
of w and west of v. If v is on the southeast stair-
case, then u and v are in a maximal clique containing
u’s convex boundary neighbor to the north, and an-
other maximal clique containing u,w, v and all reflex
vertices north of w and west of v.
Case 2c: Edge (u, v) is a diagonal edge between two

adjacent staircases. Then assume w.l.o.g. that v is on
the southwest staircase. Then both u and v see a tab
vertex t on the north tab. There is a maximal clique
containing u, v, t and a maximal clique containing u, v,
the reflex vertices north and east of v, and not t.

Case 2d: Edge (u, v) is a diagonal edge between two
opposite staircases. Then there is a maximal clique
containing u, v, and u’s convex boundary neighbor to
the west, and another maximal clique containing u, v
and u’s convex boundary neighbor to the north. �

Therefore we can compute all convex vertices, lead-
ing to the following lemma.

Lemma 3 We can identify all convex and reflex ver-
tices in a visibility graph of a UP in O(n4) time.

Proof. For each edge, compute if it is in exactly one
maximal clique in O(n2) time. If so, its endvertices
are convex. The remaining vertices are reflex. Check-
ing all O(n2) edges takes O(n4) time in total. �

Definition 1 (regularity) We call a UP regular if
each of its staircase boundaries have the same number
of vertices. Otherwise, we call it irregular.

For this extended abstract, we concentrate on irreg-
ular unit-length orthogonally convex polygons (IUPs).
However, similar methods work for regular polygons.

3 Reconstructing IUPs

From now on, we assume that P is an IUP, and that
GP is its visibility graph. We note that two staircases
in an IUP have more vertices than the other two. We
call these long staircases, and the other ones short.

Lemma 4 An IUP has 4 maximal cliques of size 7
that contain more than 2 convex vertices. Further-
more, each such clique contains exactly one tab edge.

Proof. Each of the 4 tabs are in exactly one such
maximal clique. Other cliques that contain 3 convex
vertices have at least 9 vertices, each convex vertex
and its two reflex neighbors. �

Lemma 5 In an IUP, we can find a set of at most 8
edges that contains the 4 tab edges in O(n4) time.

Proof. Compute the 4 maximal cliques from
Lemma 4. These cliques have exactly 3 convex ver-
tices each, and tab edges are incident to two con-
vex vertices, narrowing our choice of tab down to
4 ·

(
3
2

)
= 12 edges. We detect and remove any ver-

tical or horizontal non-boundary edges by checking
which edges are in multiple maximal cliques. There
are 4 of these; thus, we have 8 edges to consider. �
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Furthermore these eight edges form 4 disjoint paths
on 2 edges, and the middle vertex on each path is
a tab vertex. Lastly, we note that these known tab
vertices are on the long staircases. We now show how
to eliminate the remaining 4 non-tab edges.

Lemma 6 We can compute the 4 tab edges of an IUP
in O(n4) time.

Proof. First find the 8 candidates as in Lemma 5.
Recall that we already know one vertex on each tab

edge, and that these vertices are on the long stair-
cases. Let one of them be called u. Now it remains
the find u’s neighbor on its tab edge. Vertex u has
two candidate neighbors; let’s call them v and w. Just
for concreteness, let’s say u is on the north edge and
is on the northeast staircase.

Suppose w.l.o.g. that v has more reflex neighbors
than w, then v is u’s neighbor on a tab edge, be-
cause it sees reflex vertices on the whole northeast
and southeast staircases, while w sees only a subset
of those. Otherwise v and w have the same number
of reflex neighbors. Then either v or w has more con-
vex neighbors. Suppose w.l.o.g. that v is a tab vertex,
then v has fewer convex neighbors than w. To see why,
note that since u is on northeast (long) staircase, v is
on the northwest (short) staircase. Vertex v has con-
vex neighbors u, w, and every convex vertex on the
southeast (short) staircase. Likewise, w has convex
neighbors v, u, every convex vertex on the northeast
(long) staircase (including u) and one vertex on the
southwest (long) staircase.

We can do these checks for all such pairs v and w,
giving us all tab edges. �

Now that we have the 4 tab edges, we pick one
arbitrarily to be the north edge. We show how to
orient the polygon such that the northwest staircase
is short and the northeast staircase is long. We do
this by identifying the convex vertices on the short
staircase by computing elementary cliques.

Definition 2 (elementary clique) An elementary
clique in an IUP is a maximal clique that contains
exactly 3 convex vertices and either contains a tab
edge or no tab vertices. (See Figure 2.)

Lemma 7 We can identify the elementary cliques
with vertices on the northwest staircase in O(n4) time.

Proof. First, we compute the O(n) elementary
cliques as follows. We compute all axis-aligned, non-
boundary visibility edges that have only convex end-
vertices. We then compute the 2 maximal cliques con-
taining each such edge, and keep only the cliques with
3 convex vertices.

Let C0 be the unique maximal (elementary) clique
containing the north edge. Then C0 contains 4
reflex vertices R0, 3 of which are in exactly one

C0

C1

C2

C3

C4

Figure 2: Elementary cliques of an IUP. Note that
only half of the elementary cliques are shown.

other elementary clique, which we’ll call C1. The
northwest staircase has kNW elementary cliques,
C0, . . . , CkNW−1, where each clique Ci contains reflex
vertices Ri. Then |Ri ∩Ci+1| = 3, and for j 6= i, i+ 1
Ri ∩ Cj = ∅.

Therefore, from elementary clique Ci, we can com-
pute elementary clique Ci+1 by searching for the only
other elementary clique containing reflex vertices Ri.
Once we reach an elementary clique containing a tab
edge, then we have computed all elementary cliques
on the northwest staircase. This tab edge is the west
edge and we are finished. �

We now show how to assign the convex vertices
from the elementary cliques to each staircase.

Lemma 8 We can identify the convex vertices on the
northwest staircase in O(n4) time.

Proof. First we assign all non-tab convex vertices.
Let CNW be a non-primary elementary clique contain-
ing (non-tab) convex vertices vNW, vNE and vSW from
the northwest, northeast and southwest staircases re-
spectively. Then vNW sees neither a vertex on the
north nor west edge. However, vNE sees a vertex on
the west edge, and vSW sees a vertex on the north
edge. Therefore, we can compute the non-tab convex
vertices on the northwest staircase by checking which
vertices have no neighbors on the north or west edges.
Now we assign the tab vertices to a staircase. There is
exactly one visibility edge connecting a vertex vN on
the north edge to a vertex vW on the west edge. Then
vW is on the southeast staircase, vN is on the north-
east staircase, and the remaining two tab vertices are
on the northwest staircase.

Furthermore, we can assign the remaining convex
vertices to the southwest and northeast staircases:
Convex vertices on the southwest (northeast) stair-
case cannot see vertices on the west (north) edge. �

We can repeat the above algorithm to find the con-
vex vertices on the southeast staircase. However, we
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Figure 3: Left: Tab vertices a and b see unique reflex
vertices on long staircases. Right: We assign the re-
maining reflex vertices with rectangles between long
staircases.

still need to assign any remaining vertices to the mid-
dle of the southwest and northeast (long) staircases.
Note that these are the vertices which cannot see
the northwest and southeast staircases and, therefore,
weren’t assigned in the above algorithm.

Lemma 9 We can assign the convex vertices to their
long staircases in O(n4) time.

Proof. Let W and E be all the convex vertices on
the southwest and northeast staircases (which we are
computing) and let W0 and E0 be the convex ver-
tices on the southwest and northeast staircases that
are already known from the elementary cliques from
Lemma 8. Let Nc(v) denote the set of convex neigh-
bors on the opposite staircase of some vertex v. Then,
for each vertex w0 ∈ W0, Nc(w0) ⊆ E , i.e., the convex
neighbors of the (convex) vertices in W0 are on the
northeast staircase. Similarly, for each vertex e0 ∈ E0,
Nc(e0) ⊆ W. Then we can iteratively define sets Ei =
Ei−1 \ ∪w∈Wi−1

Nc(w) and Wi =Wi−1 \ ∪e∈Ei−1
Nc(e)

and identify all vertices of the southwest and north-
east staircases as W = ∪iWi and E = ∪iEi.

To order the vertices along the southwest staircase,
note that the sets Wi should appear in order of in-
creasing i from top to bottom. Also note that if one
were to assign the vertices of Wi the staircase from
top to bottom, each vertex wi in this order would see
fewer vertices of Ei−1. Thus, we can order the vertices
within each Wi. The argument for ordering vertices
of Ei is symmetric. �

We can now choose the south and east edges: a
vertex on the east (south) edge can see convex vertices
on the southwest (northeast) staircase.

Lemma 10 We can assign the reflex vertices to each
staircase in O(n4) time.

Proof. Once the convex vertices are ordered on the
staircases, we can compare the reflex vertices that are
seen from the tab vertices. Let a and b be vertices
on different tab edges, that are visible along a short

staircase (see Figure 3, left), and let R be the set
of all reflex vertices of the IUP, and N(v) be a set
of all neighbors of vertex v in the visibility graph of
IUP. Then R0 = N(a) ∩N(b) ∩ R contains all reflex
vertices from the short staircase, plus two extra reflex
vertices from the neighboring long staircases. The
remaining vertices N(a)\R0 are on one long staircase
(and N(b) \R0 are on the other long staircase).

Thus, we can find many reflex vertices on the long
staircases, except the end vertices and potentially
those in the middle of the staircases. To find the re-
maining ones, we build rectangles (maximal cliques)
consisting of two convex vertices u and v on the op-
posite staircases and a known reflex vertex w, such
that (u,w) forms a boundary edge of the IUP (see
Figure 3, right). These rectangles define new reflex
vertices on the opposite staircase from w. Thus, we
iteratively discover all new reflex vertices. �

Lemma 11 We can order the reflex vertices on each
staircase in O(n4) time.

Proof. Let c0, . . . , ck be the convex vertices in order
on some staircase S containing reflex vertices R. Then
N(ci)∩N(ci+1)∩R = {ri} where ri is the reflex vertex
between ci and ci+1 on staircase S. Thus, we know the
order of the reflex vertices along each staircase. �

Therefore, we have ordered the vertices on all stair-
cases, constructing the Hamiltonian cycle of boundary
edges in GP , arriving at the following theorem:

Theorem 12 In O(n4) time, we can reconstruct an
IUP P from its visibility graph GP .
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