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Approximating the Simplicial Depth in High Dimensions
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Abstract

Let P be a set of n points in d-dimensions. The sim-
plicial depth σP (q) of a point q is the number of d-
simplices with vertices in P that contain q in their
convex hulls. The simplicial depth is a notion of data
depth with many applications in robust statistics and
computational geometry. Computing the simplicial
depth of a point is known to be a challenging problem.
The trivial solution requires O(nd+1) time whereas it
is generally believed that one cannot do better than
O(nd−1).

We present two approximation algorithms for com-
puting the simplicial depth of a point in high dimen-
sions with different worst-case scenarios. By com-
bining these approaches, we can compute a (1 +
ε)-approximation of the simplicial depth in time
Õ(nd/2+1) with high probability ignoring polyloga-
rithmic factors. Furthermore, we present a simple
strategy to compute the simplicial depth exactly in
O(nd log n) time, which provides the first improve-
ment over the trivial O(nd+1) time algorithm for
d > 4. Finally, we show that computing the sim-
plicial depth exactly is #P-complete and W[1]-hard if
the dimension is part of the input.

1 Introduction

Let P ⊂ Rd be a point set and q ∈ Rd be a point.
The simplicial depth [14] σP (q) of q with respect to
P is the number of subsets P ′ ⊆ P , |P ′| = d + 1,
that contain q in their convex hull (see also [4] for
an alternate definition). This is one of the important
definitions of data depth and has generated interest
in both robust statistics and computational geometry
since its introduction. Designing efficient algorithms
to compute (or approximate) the simplicial depth of
a point remains an intriguing task in this area.

Computing the simplicial depth of a single point
in 2D was considered even before its formal defini-
tion [11] almost three decades ago, perhaps because it
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translates into an “intuitive” problem of counting the
number of triangles containing a given point. In fact,
at least three independent papers study this problem
in 2D and show how to compute the simplicial depth
in O(n log n) time [9, 11, 14]. This running time is
optimal [1]. In 2003, Burr et al. [4] presented an al-
ternate definition for the simplicial depth to overcome
some unpleasant behaviors that emerge when deal-
ing with degeneracies. Since we will be dealing with
approximations, we will assume general position and
thus avoid issues with degeneracy. In 3D, the first
non-trivial result offered the bound of O(n2) [9] but
it was flawed; fortunately, the running time of O(n2)
could still be obtained with proper modifications [7].
The same authors presented an algorithm with run-
ning time of O(n4) in 4D. For dimensions beyond 4
there seems to be no significant improvements over the
trivial O(nd+1) brute-force solution. Furthermore, it
is natural to conjecture that computing the simpli-
cial depth should require Ω(nd−1) time: given a set P
of n points, it is generally conjectured that detecting
whether or not d+1 points lie on a hyperplane requires
Ω(nd) time [8] and this conjecture would imply that
detecting whether d points of P and a fixed point q lie
on a hyperplane should require Ω(nd−1) time. This is
one motivation to consider the approximate version
of the problem. In fact, Burr et al. [4] have already
expressed interest in computing an approximation to
the simplicial depth and they propose a potential ap-
proach, although without any worst-case analysis [3].

Here, we only consider relative approximation; ad-
ditive approximation (with additive error of εnd+1)
can be obtained using ε-nets and ε-approximations
(see [5, 2] for more details).

Another motivation for computing a relative ap-
proximation comes from applications in outlier re-
moval. Intuitively, statistical depth measures how
deep a point is embedded in the data cloud with
outliers corresponding to points with small values of
depth. In such applications, if a small relative error
of (1 + ε) is tolerable, then faster outlier removal can
be possible using approximations.

2 Approximation in High Dimensions

In this section, we present two approximation algo-
rithms for simplicial depth in high dimensions, each
with a different worst case scenario. By combining
these strategies, we obtain a constant factor approxi-
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mation algorithm with Õ(nd/2+1) running time.

2.1 Small Simplicial Depth: Enumeration

Let P ⊂ Rd be a set and q ∈ Rd a query point. We
denote with ∆P the set of all d-simplices with vertices
in P . If σP (q) is small, a simple counting approach
that iterates through all simplices ∆ ∈ ∆P leads to an
efficient algorithm. The key is to construct a graph
that contains exactly one node per simplex ∆ ∈ ∆P .
Then, counting can be carried out by a breadth-first
search and we avoid looking at subsets of P that do
not contain q in their convex hull. For this, we use the
Gale transform to dualize the problem. We shortly
restate important properties of the Gale transform.
For more details see [13]. Let in the following 0 denote
the origin.

Lemma 1 Let P = {p1, . . . , pn} ⊂ Rd be a point
set with σP (0) > 0. Then, there is a set P̄ =
{p̄1, . . . , p̄n} ⊂ Rn−d−1 such that a (d+1)-subset P ′ ⊆
P contains 0 in its convex hull iff P̄ \ {p̄i | pi ∈ P ′}
defines a facet of conv(P̄ ).

Consider now the graph GP (q) = (V,E) with V =
∆P . Two simplices ∆,∆′ are adjacent iff ∆′ can be
obtained from ∆ by swapping one point in ∆ with
a different point in P . We call GP (q) the simplicial
graph of P with respect to q.

Lemma 2 Let P ⊂ Rd be a set of size n. Then,
GP (q) is (n−d−1)-connected and (n−d−1)-regular.

Proof. We assume w.l.o.g. that q = 0. Let ∆,∆′

be two adjacent nodes in GP (q). Furthermore let P̄
denote the Gale transform of P . Set ∆̄ = {p̄ | p ∈
P \∆} and ∆̄′ = {p̄ | p ∈ P \∆′}. By Lemma 1, the
two sets ∆̄ and ∆̄′ define facets of conv(P̄ ). Since ∆
and ∆′ are adjacent, we have |∆ ∩∆′| = d and hence
|∆̄ ∩ ∆̄′| = n − d − 2. Thus, the facets defined by
∆̄ and ∆̄′ share a ridge. Hence, GP (q) is isomorph
to the 1-skeleton of the polytope dual to conv(P̄ ).
In particular, this implies that GP (q) is (n − d − 1)-
connected. It remains to show that the graph is (n−
d − 1)-regular. Let ∆ ∈ V be a node. It is easy
to see that each of the n − d − 1 points in P \ ∆
can be swapped in, each time resulting in a distinct
simplex. �

Since GP (q) is connected, we can count the number
of vertices using BFS.

Lemma 3 Let P ⊂ Rd be a set of size n and q ∈
Rd a query point. Then, σP (q) can be computed in
O(nσP (q)) time.

2.2 Large Simplicial Depth: Sampling

If the simplicial depth is large, the enumeration ap-
proach becomes infeasible. In this case we apply a
simple random sampling algorithm.

Lemma 4 Let P ⊂ Rd be a set and q ∈ Rd a query
point. Furthermore, let ε, δ > 0 be constants and let
m ∈ N be a parameter. If σP (q) ≥ m, then σP (q)
can be (1 + ε)-approximated in Õ(nd+1/m) time with
error probability O(n−δ).

Proof. Let ∆1, . . . ,∆k be k random (d + 1)-subsets
of P for k =

⌈
4δnd+1 logn

ε2m

⌉
. For each random sub-

set ∆i, let Xi be 1 iff q ∈ conv(∆i) and 0 oth-
erwise. We have µ = E[

∑k
i=1Xi] = k σP (q)

nd+1 =
4δσP (q) logn

ε2m ≥ 4δ
ε2 log n. Applying the Chernoff bound,

we get Pr[|
∑k
i=1Xi − µ| ≥ εµ] = O(n−δ). Thus,

nd+1

k X is a (1 + ε)-approximation of σP (q) with error
probability O(n−δ).

For d = O(1), we can test in O(1) whether a given
(d+1)-subset of P contains a point in its convex hull.
Hence, the running time is dominated by the number
of samples. �

2.3 Combining the Strategies

Theorem 5 Let P ⊂ Rd be a set and q ∈ Rd a query
point. Furthermore, let ε > 0 and δ > 0 be constants.
Then, σP (q) can be (1+ε)-approximated in Õ(nd/2+1)
time with error probability O(n−δ).

Proof. We apply the algorithm from Lemma 3 and
stop it once nd/2 nodes of GP (q) are explored. This
requires O(nd/2+1) time. If the graph is not yet fully
explored, we know σP (q) ≥ nd/2. We can now apply
the algorithm from Lemma 4 and compute a (1 + ε)-
approximation in Õ(nd/2+1) time with error probabil-
ity O(n−δ). �

3 An Exact Algorithm in High Dimensions

In this section we describe a simple strategy to com-
pute the simplicial depth exactly in O(nd log n) time.
While we do not achieve the conjectured lower bound
of Ω(nd−1), we cut down roughly a factor n compared
to the trivial upper bound of O(nd+1). Note that this
almost matches the best previous bound of O(n4) in
4D as well [7].

W.l.o.g, assume q is the origin, 0. Our main idea
is very simple: consider d points p1, . . . , pd ∈ P . Let
−→ri be the ray that originates from 0 towards −pi. We
would like to count how many points p ∈ P can cre-
ate a simplex with p1, . . . , pd that contains 0. We ob-
serve that this is equivalent to counting the number of
points of P that lie inside the simplex created by rays
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−→r1 , . . . ,
−→rd . We can count this number in polylogarith-

mic time if we spend Õ(nd) time to build a simplex
range counting data structure on P . This would give
an algorithm with overall running time of Õ(nd). We
can cut the log factors down to one by employing a
slightly more intelligent approach.

We use the following observation made by Gil et
al. [9].

Observation 1 Let q be a point inside a simplex
a1 . . . ad+1 and let a′i be a point on the ray

→
qai. Then,

q ∈ conv{a1, . . . , ai−1, a
′
i, ai+1, . . . , ad+1}.

Pick two arbitrary parallel hyperplanes h1 and h2

such that P lies between them. This can be done
easily in O(n) time. Next, using central projection
from 0, we map the points onto the hyperplanes h1

and h2: for every point pi ∈ P , we create the ray
−→
0pi

and let p′i be the intersection of the ray with h1 or h2.
Thus, the point set P can be mapped to two point sets
P1 and P2 where P1 lies on h1 and p2 lies on P2 and
furthermore, by Observation 1, σP (q) = σP1∪P2

(q).
Now we use the following result from the simplex

range counting literature.

Theorem 6 [6] Given a set of n points in d-
dimensional space, and any constant ε > 0, one can
build a data structure of size O(nd+ε) in O(nd+ε) ex-
pected preprocessing time, such that given any query
simplex ∆, the number of points in ∆ can be counted
in O(log n) time.

We build the above data structure on P1 and P2.
However, since both of these point sets lie on a
(d − 1)-dimensional flat, the preprocessing time is
O(nd−1+ε) = O(nd) if we choose ε = 1/2. Next,
for any d tuples of points p1, . . . , pd, we create the
rays −→r1 , . . . ,

−→rd and the corresponding simplex ∆. We
find the intersection of ∆ in O(1) time with hyper-
planes h1 and h2 and issue two simplex range count-
ing queries, one in each hyperplane. Thus, in O(log n)
time, we can count how many simplices contain 0 that
are made by points p1, . . . , pd. We add all these num-
bers over all d tuples, which counts each simplex con-
taining 0 exactly (d + 1) times. The number of d-
tuples is O(nd) and for each we spend O(log n) time
querying the data structures. Thus, we obtain the
following theorem.

Theorem 7 Given a set P of n points in Rd, the
simplicial depth of a point p can be computed in
O(nd log n) expected time.

4 Complexity

Let P ⊂ Rd be a set of n points and q ∈ Rd a query
point. If the dimension is constant, then clearly com-
puting σP (q) can be carried out in polynomial time.

We now consider the case that d is part of the input.
We show that in this case computing the simplicial
depth is #P-complete by a reduction from counting
the number of perfect matchings in bipartite graphs.

Theorem 8 Let P ⊂ Rd be a set and q ∈ Rd a query
point. Then, computing σP (q) is #P-complete if the
dimension is part of the input.

Proof. Let G = (V,E) be a bipartite graph with
|V | = n and |E| = m. It is well known that com-
puting the number of perfect matchings in G is #P-
complete [15]. Let PH ⊂ Rm be the perfect match-
ing polytope for G [10, Chapter 30]. It is defined by
m+ 2n half-spaces. Furthermore, the number of ver-
tices of PH equals the number k of perfect matchings
in G. Consider now the dual polytope PV ⊂ Rm.
It is the convex hull of m + 2n points P ⊂ Rm and
the number of facets equals k. Let P̄ ⊂ R2n−1 be the
Gale transform of P . By Lemma 1, there is a bijection
between the facets of PV and the (2n − 1)-simplices
with vertices in P̄ that contain 0 in their convex hull.
Hence, σP̄ (0) = k. �

Next, we show that computing the simplicial depth
is W[1]-hard with respect to the parameter d by a re-
duction to d-Carathéodory. In d-Carathéodory, we are
given a set P ⊂ Rd and have to decide whether there
is a (d−1)-simplex with vertices in P that contains 0
in its convex hull. Knauer et al. [12] proved that this
problem is W[1]-hard with respect to the parameter
d.

Theorem 9 Let P ⊂ Rd be a set and q ∈ Rd a query
point. Then, computing σP (q) is W[1]-hard with re-
spect to the parameter d.

Proof. Assume we have access to an oracle that,
given a query point q and a setQ ⊂ Rd, returns σQ(q).
We show that #d-Carathéodory can be decided with
two oracle queries.

Let kd denote the number of (d− 1)-simplices with
vertices in P that contain 0 in their convex hulls
and let kd+1 denote the number of d-simplices with
vertices in P that contain 0 in their interior. Then
σP (0) can be written as (|P | − d)kd + kd+1. We want
to decide whether kd > 0. For each point p ∈ P
let p̃ ∈ Rd+1 denote the (d + 1)-dimensional point
that is obtained by appending a 1-coordinate and
similarly, for each subset P ′ ⊂ P let P̃ ′ denote the
set {p̃ | p ∈ P ′} ⊂ Rd+1. We denote with S the
set {(0, . . . , 0,−1)T , (0, . . . , 0,−2)T } ⊂ Rd+1 and set
Q = P̃ ∪ S. Again, we want to express σQ(0) as a
function of kd and kd+1. Let Q′ ⊂ Q, |Q′| = d+ 2, be
a subset that contains 0 in its convex hull. Clearly,
Q′ has to contain a point from S. Let P̃ ′ = Q′ ∩ P̃
denote the part from P̃ and let S′ = Q′ ∩ S de-
note the part from S. By construction of S, we have
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(0, . . . , 0, 1)T ∈ conv(P̃ ′) and hence 0 ∈ conv(P ′).
That is, each (d+ 2)-simplex with vertices in Q that
contains 0 in its convex hull corresponds to either
a d-simplex or a (d − 1)-simplex with vertices in P
that contains 0 in its convex hull. Consider now a set
P ′ ⊂ P with |P ′| = d+1 and 0 ∈ conv(P ). Then, the
corresponding set P̃ ′ can be extended in two ways to a
subset Q′ ⊂ Q, |Q′| = d+2, with 0 ∈ conv(Q′) by tak-
ing either point in S. On the other hand, if P ′ ⊂ P is a
subset of size d with 0 ∈ conv(P ′), then we can extend
P̃ ′ to a set Q′ ⊂ Q, |Q′| = d + 2, with 0 ∈ conv(Q′)
by either taking both points in S or by taking one ar-
bitrary point in P̃ \ P̃ ′ and either point in S. Hence,
we have σQ(0) = 2kd+1 +kd−1 +2(|P |−d)kd−1. Since
kd = σQ(0) − 2σP (0), we can decide whether kd > 0
with two oracle queries. �

The following theorem is now immediate.

Theorem 10 Let P ⊂ Rd be a set of d-dimensional
points and q ∈ Rd a query point. Then, computing
σP (q) is #P-complete and W[1]-hard with respect to
the parameter d.

We conclude the section with a constructive re-
sult: although computing the simplicial depth is #P-
complete, it is possible to determine the parity in
polynomial-time.

Theorem 11 Let P ⊂ Rd be a set of points and
q ∈ Rd a query point. If n − d − 1 is odd or

(
n
d

)
is even, then σP (q) is even. Otherwise, σP (q) is odd.

Proof. We assume w.l.o.g. that q is the origin. Since
the simplicial graph GP (0) is (n− d− 1)-regular, the
product (n− d− 1)|V | = (n− d− 1)σP (0) is even. If
(n−d− 1) is odd, σP (q) has to be even. Assume now
(n − d − 1) is even. We construct a new point set Q
in Rd+1 similar as in the proof of Theorem 9. Let R
denote the set {(0, . . . , 0,−1)T , (0, . . . , 0, 2)T } ⊂ Rd+1

and set Q = P̃ ∪ R ⊂ Rd+1, where P̃ is defined as in
the proof of Theorem 9. Let us now consider the graph
GQ(0). Since n− d− 1 is even, (|Q| − (d+ 1)− 1) =
n − d is odd. Now, GQ(0) is (n − d)-regular and
thus σQ(0) is even. Let Q′ ⊂ Q, |Q| = d + 2, be
a subset that contains the origin in its convex hull.
Then either (i) R ⊂ Q′ or (ii) Q′ contains the point
r = (0, . . . , 0,−1)T ∈ R and d + 1 points P̃ ′ ⊆ P̃
with (0, . . . , 0, 1)T ∈ conv(P̃ ′). There are

(
n
d

)
sets Q′

with Property (i) and σP (0) sets Q′ with Property
(ii). Hence, we have σQ(0) = σP (0) +

(
n
d

)
is even and

thus σP (0) is odd iff
(
n
d

)
is odd. �
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