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Detecting affine equivalences of planar rational curves

Michael Hauer and Bert Jüttler∗

Abstract

We derive a system of polynomial equations to de-
cide whether two rational parametric curves in the
plane are related by an affine transformation and to
detect all such affine equivalences. In order to do so,
we use homogenization in both the parameter domain
and the Euclidean plane. Furthermore, employing
barycentric coordinates leads to a simple method for
detecting affine equivalences, as these coordinates are
invariant under affine transformations. In addition
we interpret the result by relating the monomial co-
efficients to Bézier control points. Finally we provide
numerical examples.

1 Introduction

Detecting symmetries is an essential problem in Pat-
tern Recognition, Computer Graphics and Computer
Vision. First approaches concentrated on point sets
as input data. In 2004, Braß and Knauer [5] proposed
to apply a point-based method to control polygons of
Bézier curves and surfaces. For matching planar curve
segments in B-spline form, a method based on affinely
invariant moments has been described in [6]. Sánchez-
Reyes [8] recently developed a method for symmetry
detection of curves given in Bernstein-Bézier represen-
tation. Lebmeir and Richter-Gebert [7] investigated
symmetries of algebraic curves given in implicit form.
During the last two years, Alcázar et al. [1, 2, 3, 4]
published a series of papers dealing with the problem
of symmetry detection for parametric rational curves.
They use the fact that the symmetry of a curve in
proper parameterization can be related to a ratio-
nal linear transformation in the parameter domain,
see [9].

We consider properly parameterized rational curves
and investigate the more general concept of affine
equivalences. Symmetry detection can then be seen
as a special case.

2 Detecting equivalences

Before presenting our method, we recall some geomet-
ric tools and clarify our notation.
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2.1 Preliminaries

We consider curves in the projectively closed Eu-
clidean plane Ē2, whose points are given by ho-
mogeneous coordinate vectors x = (x0, x1, x2)T ∈
R3\{(0, 0, 0)}. If there exists a µ 6= 0, such that
x = µy, x and y represent the same point in Ē2.
We denote this by x ' y.

Three non-collinear base points v0, v1 and v2, none
of which is a point at infinity, define a barycentric co-
ordinate system, such that any finite point x possesses
unique barycentric coordinates λi(x), i = 0, . . . , 2,
with respect to the base points. More precisely, we
have

1

x0
x =

2∑
i=0

λi(x)
1

vi,0
vi.

The barycentric coordinates can be computed using
homogeneous coordinates

λ0(x; v0,v1,v2) = Λ(x; v0,v1,v2),
λ1(x; v0,v1,v2) = Λ(x; v1,v2,v0),
λ2(x; v0,v1,v2) = Λ(x; v2,v0,v1)

where

Λ(x; a,b, c) =
a0 det(x,b, c)

x0 det(a,b, c)
. (1)

Throughout the paper we consider two parametric
rational curves C (and C′, respectively) ⊂ Ē2, which
are considered as point sets. Both curves are given by
proper parameterizations1

p : P 1(R)→ C ⊂ Ē2,
t 7→ p(t) = (p0(t0, t1), p1(t0, t1), p2(t0, t1)) .

The parameter t = (t0, t1) is a point on the projective
line P 1(R).

The homogeneous coordinates of the curves are ho-
mogeneous polynomials of degree n,

pj(t) =

n∑
i=0

cj,it
n−i
0 ti1

with coefficient vectors

ci = (c0,i, c1,i, c2,i)
T .

Polynomials of degree n given in standard (i.e., non-
homogeneous) form are homogenized by replacing ti

with tn−i0 ti1.

1If improper parameterizations are given, one may obtain
proper ones by applying a suitable reparameterization, see [9].
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Furthermore we assume that both curves are in re-
duced form, i.e.

gcd(p0(t), p1(t), p2(t)) = gcd(p′0(t), p′1(t), p′2(t)) = 1

and of common degree n ≥ 2. Affine transformation
do not change the degree of a curve.

In particular, this implies that both curves possess
the same degree

max(degti(p0(t)),degti(p1(t)),degti(p2(t))) = n,

max(degti(p
′
0(t)),degti(p

′
1(t)),degti(p

′
2(t))) = n,

with respect to ti, i = 0, 1. Note that n ≥ 2 exludes
lines, since we consider proper parameterizations only.

Recall that using homogeneous coordinates allows
to represent any affine transformation by a matrix
multiplication

x 7→Mx, M =

(
1 0
~b A

)
,

where A is a 2 × 2 matrix and ~b ∈ R2. Any reg-
ular affine transformation is represented by a non-
singular matrix M . The class of affine transforma-
tions includes translations, rotations, uniform and
non-uniform scalings, reflections and shears.

Definition 1 Two curves C and C′ are said to be
affinely equivalent if there exists a regular affine trans-
formation matrix M such that C′ = MC. Further-
more, C is said to possess an affine symmetry if there
exists a regular affine transformation matrix M , dif-
ferent from the identity, such that C = MC.

Due to the group structure of regular affine map-
pings, affine equivalences define an equivalence rela-
tion. If the matrix A is orthogonal, i.e. ATA = I,
then affinely equivalent curves are said to be congru-
ent and an affine symmetry is simply called a sym-
metry. If A is a multiple of an orthogonal matrix,
ATA = λI with λ ∈ R, then the affinely equivalent
curves are said to be similar.

2.2 Coefficient-based detection

Lemma 1 Two rational parameterizations p(t) and
p′(t) are equivalent, i.e. p(t) ' p′(t) holds for all t ∈
P 1(R), if and only if there exists a non-zero constant
µ such that ci = µc′i, i = 0, . . . , n.

Proof. The equivalence of the two curves implies
that there exists a rational function

µ(t) =
µ1(t)

µ0(t)
=
p′0(t)

p0(t)
=
p′1(t)

p1(t)
=
p′2(t)

p2(t)

where µ0 are µ1 are relatively prime polynomials, such
that p(t) = µ(t)p′(t). Consequently, the two rational
curves satisfy

µ0(t)p(t) = µ1(t)p′(t).

This function is indeed a constant since

µ0| gcd(p′0, p
′
1, p
′
2)︸ ︷︷ ︸

=1

and µ1| gcd(p0, p1, p2)︸ ︷︷ ︸
=1

.

�

Recall that any two proper parameterizations of a
rational curve are related by a linear rational repa-
rameterization, which is simply a regular projective
transformation of the real projective line

r(t) =

(
α00 α01

α10 α11

)
︸ ︷︷ ︸

=α

t =

(
α00t0 + α01t1
α10t0 + α11t1

)

described by a regular matrix α. We investigate the
transformation of the coefficients which is caused by
such a reparameterization.

Lemma 2 The reparameterized curve p̂ = p ◦ r,

p(r(t)) = p̂(t) =
n∑
j=0

ĉjt
n−j
0 tj1

has the coefficients

ĉj(α) =

n∑
i=0

ci

j∑
`=0

(
n− i

`

)(
i

j − `

)
αn−i−`
00 α`

01α
i−j+`
10 αj−`

11

for j = 0, . . . , n.

Proof. This result is confirmed by a simple compu-
tation and by comparing the coefficients. �

We identify affine equivalences by analyzing
whether the coefficients are related by an affine trans-
formation.

Proposition 3 Let C and C′ be rational planar
curves with parameterizations p(t) and p′(t) satis-
fying our assumptions. The two curves are affinely
equivalent if and only if there exists a constant µ, an
affine transformation matrix M and a regular projec-
tive transformation α, such that the control points of
both curves satisfy

Mc′j = µ ĉj(α), j = 0, . . . , n. (2)

Proof. On the one hand, the conditions (2) imply
that the two curves are affinely equivalent. On the
other hand, we consider two affinely invariant curves
C′ and C. There exists an affine transformation M
such that

MC′ = C.

We define z(t) = Mp′(t). Consequently z(t) and
p(t) are two proper parameterizations of the same
curve C. According to Lemma 4.17 of [9] there is a
linear rational reparameterization r(t) – and hence an
associated projective transformation α – such that

z(t) ' p(r(t)).
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Thus we obtain that

n∑
i=0

Mc′it
n−i
0 ti1 = Mp′(t) = z(t) ' p(r(t))

= p̂(t) =
n∑
i=0

ĉi(α)tn−i0 ti1.

Using Lemma 1 confirms (2). �

2.3 Barycentric coordinates

The existence of the affine transformation matrix M
can be characterized with the help of barycentric co-
ordinates.

Corollary 4 Let C and C′ be two rational planar
curves as in Proposition 3. We assume that

(i) all points c′i are finite points (c′i,0 6= 0) and

(ii) the first three points c′0, c′1 and c′2 are non-
collinear.

The two curves C and C′ are affinely equivalent if and
only if there exist a regular projective transformation
α and a constant µ such that the equations

c′j,0 = µ ĉj,0(α), j = 0, . . . , n (3)

and

λi(c
′
j ; c
′
0, c
′
1, c
′
2) = λi(ĉj(α); ĉ0(α), ĉ1(α), ĉ2(α)),

i = 0, . . . , 2, j = 3, . . . , n.
(4)

are satisfied.

For any solution of the system (3) and (4), we ob-
tain the corresponding affine transformation by solv-
ing the linear system of equations in six unknowns

Mc′i = µĉi for i = 0, . . . , 2.

In order to find Euclidean congruences and Euclidean
symmetries (resp. similarities) we have to check in a
postprocessing step whether the submatrix A is or-
thogonal (resp. a multiple of an orthogonal matrix).

Clearly, it is also possible to consider other triplets
of points in (ii) and (4).

2.4 The case of Bézier control points

Rational Bézier curves of degree n

p(u) =

n∑
i=0

Bni (u)bi

generally possess the properties (proper parameteriza-
tion, reduced form, common denominator) which are
assumed by our method. These curves can be homog-
enized by simply replacing the Bernstein polynomials

Bni (u) by
(
n
i

)
tn−i0 ti1. This is equivalent to the stan-

dard homogenization u = u1

u0
and a multiplication by

un0 , followed by the projective transformation(
t0
t1

)
=

(
1 −1
0 1

)(
u0
u1

)
=

(
u0 − u1
u1

)
.

of the parameter domain. That means that the con-
trol points bi of the Bézier curves are related to the
monomial coefficients after this transformation via

ci =

(
n

i

)
bi.

3 Implementation and Examples

If the two conditions (i) or (ii) are not all satis-
fied then we apply an arbitrary projective transfor-
mation α′ to the parameterization p′ of the second
curve. Note that the first condition is always violated
for polynomial curves, hence a reparameterization is
needed in this situation. The reparameterized curve
p̂′ = p′ ◦r′, where r′ is defined by α′, satisfies all con-
ditions in general and its control points are obtained
from Lemma 2.

From equations (3) and (4) we obtain a system of
polynomial equations in α and µ by using (1). With-
out loss of generality we may apply the normalization
|µ| = 1 and arrive at the equations

c′j,0 = ± ĉj,0(α), j = 0, . . . , n

and

λi(c
′
j ; c
′
0, c
′
1, c
′
2) = λi(ĉj(α); ĉ0(α), ĉ1(α), ĉ2(α)),

i = 0, . . . , 2, j = 3, . . . , n.

These form a system in four unknowns α consisting
of 3n− 3 equations, since we may omit the equations
obtained for i = 2 as the barycentric coordinates sum
to 1.

We performed the computations using Mathemat-
ica Version 10, where we used the built-in functions
Reduce[] and NSolve[] to solve the system by symbolic
and numeric computations, respectively. For every
example we considered affine symmetries, and affine
equivalences with (p′) and without (p′′) reparameter-
ization. More precisely, we considered a master curve
and two curves derived from it by applying affine
transformations and parameter transformations.

The first example is the lemniscate (Fig. 1), which
is a degree 4 curve given by

t 7→

1 + 4t+ 12t2 + 16t3 + 8t4

1 + 4t+ 6t2 + 4t3

2t+ 6t2 + 4t3

 .



32nd European Workshop on Computational Geometry, 2016

# of p(t) p(t) and p′(t) p(t) and p′′(t)
example deg. equiv. NSolve Reduce NSolve Reduce NSolve Reduce

lemniscate 4 4 0.33 0.25 0.33 0.23 0.41 0.45

epitrochoid 4 2 0.14 0.3 0.13 0.3 0.14 0.34

4-leaf rose 6 8 2.65 2.53 2.68 1.97 2.34 2.45

offset of a
cardioid

8 2 1.03 20.04 1.03 19.91 1.06 31.76

Table 1: Computation times (times in seconds)

Figure 1: Several lemniscate like curves

As a second example we investigate the epitrochoid
(see Fig. 2), given by

t 7→

7 + 28t+ 56t2 + 56t3 + 28t4

1 + 4t+ 24t2 + 40t3 + 12t4

4t+ 12t2 − 8t3 − 16t4

 .

Again we applied reparameterizations and affine map-
pings (not shown), similar to the previous example.

Figure 2: Epitrochoid, 4-leaf rose and offset of a car-
dioid.

The third example, the 4-leaf rose (see again Fig. 2),
is given by the parameterization

t 7→

11 + 6t+ 18t2 + 32t3 + 36t4 + 24t5 + 8t6

2t+ 10t2 + 8t3 − 16t4 − 24t5 − 8t6

1 + 6t+ 8t2 − 8t3 − 20t4 − 8t5


of degree 6. Finally we apply our algorithm to the
offset of a cardioid (see again Fig. 2),

t 7→(
15(6561 + 2916t2 + 486t4 + 36t6 + t8)

−39366 + 61236t2 − 31104t3 + 3456t5 − 756t6 + 6t8

−18t(4374− 1296t− 1134t2 + 864t3 − 126t4 − 16t5 + 6t6)

)

which is a rational curve of degree 8.
Table 1 presents the computation times (on a stan-

dard PC) for solving the system (3) and (4) in these
examples.

4 Conclusion

We presented a method to detect affine equivalences
of planar rational curves. For moderate degrees of the
input curve, the corresponding polynomial system can
be solved within seconds using standard computer al-
gebra tools. To the best of our knowledge, this is the
first work on detecting affine equivalences and affine
symmetries of rational curves, and it also encompasses
the computation of symmetries or similarities, which
was studied by several authors [1, 2, 3, 4, 5, 7, 8],
as special cases. Future work will be devoted to the
generalization to higher dimensions and to the detec-
tion of approximate affine equivalences via numerical
methods.
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[1] Juan Gerardo Alcázar. Efficient detection of symme-
tries of polynomially parametrized curves. J. Com-
put. Appl. Math., 255:715–724, 2014.
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[4] Juan Gerardo Alcázar, Carlos Hermoso, and Georg
Muntingh. Symmetry detection of rational space
curves from their curvature and torsion. Comput.
Aided Geom. Des., 33(0):51 – 65, 2015.

[5] Peter Braß and Christian Knauer. Testing congru-
ence and symmetry for general 3-dimensional objects.
Comput. Geom., 27(1):3–11, 2004.

[6] Z. Huang and F. S. Cohen. Affine-invariant B-spline
moments for curve matching. Trans. Img. Proc.,
5(10):1473–1480, October 1996.

[7] Peter Lebmeir and Jürgen Richter-Gebert. Rotations,
translations and symmetry detection for complexified
curves. Comput. Aided Geom. Des., 25(9):707–719,
2008.

[8] J. Sánchez-Reyes. Detecting symmetries in polyno-
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